A Critical Analysis on the Sensitivity Enhancement of Surface Plasmon Resonance Sensors with Graphene

被引:10
作者
Almeida, Aline dos Santos [1 ,2 ]
Bahamon, Dario A. [1 ,2 ]
Peres, Nuno M. R. [3 ]
de Matos, Christiano J. S. [1 ,2 ]
机构
[1] Univ Prebiteriana Mackenzie, Sch Engn, BR-01302907 Sao Paulo, Brazil
[2] Mackenzie Presbyterian Inst, MackGraphe Graphene & Nanomat Res Inst, BR-01302907 Sao Paulo, Brazil
[3] Minho Univ, Phys Dept, Campus Gualtar, P-4710057 Braga, Portugal
基金
巴西圣保罗研究基金会;
关键词
surface plasmon resonance; sensitivity; graphene; biosensors; FIBER; BIOSENSORS;
D O I
10.3390/nano12152562
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The use of graphene in surface plasmon resonance sensors, covering a metallic (plasmonic) film, has a number of demonstrated advantages, such as protecting the film against corrosion/oxidation and facilitating the introduction of functional groups for selective sensing. Recently, a number of works have claimed that few-layer graphene can also increase the sensitivity of the sensor. However, graphene was treated as an isotropic thin film, with an out-of-plane refractive index that is identical to the in-plane index. Here, we critically examine the role of single and few layers of graphene in the sensitivity enhancement of surface plasmon resonance sensors. Graphene is introduced over the metallic film via three different descriptions: as an atomic-thick two-dimensional sheet, as a thin effective isotropic material (same conductivity in the three coordinate directions), and as an non-isotropic layer (different conductivity in the perpendicular direction to the two-dimensional plane). We find that only the isotropic layer model, which is known to be incorrect for the optical modeling of graphene, provides sizable sensitivity increases, while the other, more accurate, models lead to a negligible contribution to the sensitivity.
引用
收藏
页数:9
相关论文
共 49 条
[1]   Fiber Bragg grating assisted surface plasmon resonance sensor with graphene oxide sensing layer [J].
Arasu, P. T. ;
Noor, A. S. M. ;
Shabaneh, A. A. ;
Yaacob, M. H. ;
Lim, H. N. ;
Mahdi, M. A. .
OPTICS COMMUNICATIONS, 2016, 380 :260-266
[2]   Rapid and on-site simultaneous electrochemical detection of copper, lead and mercury in the Amazon river [J].
Bernalte, Elena ;
Arevalo, Sebastian ;
Perez-Taborda, Jaime ;
Wenk, Jannis ;
Estrela, Pedro ;
Avila, Alba ;
Di Lorenzo, Mirella .
SENSORS AND ACTUATORS B-CHEMICAL, 2020, 307
[3]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/NPHOTON.2010.186, 10.1038/nphoton.2010.186]
[4]  
Born M., 2013, Principles of Optics Electromagnetic Theory of Propagation, Interference and Diffraction of Light
[5]   Optical constants of graphene layers in the visible range [J].
Bruna, M. ;
Borini, S. .
APPLIED PHYSICS LETTERS, 2009, 94 (03)
[6]   Rayleigh imaging of graphene and graphene layers [J].
Casiraghi, C. ;
Hartschuh, A. ;
Lidorikis, E. ;
Qian, H. ;
Harutyunyan, H. ;
Gokus, T. ;
Novoselov, K. S. ;
Ferrari, A. C. .
NANO LETTERS, 2007, 7 (09) :2711-2717
[7]   Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors [J].
Choi, Seung Ho ;
Kim, Young L. ;
Byun, Kyung Min .
OPTICS EXPRESS, 2011, 19 (02) :458-466
[8]   Minute-scale detection of SARS-CoV-2 using a low-cost biosensor composed of pencil graphite electrodes [J].
de Lima, Lucas F. ;
Ferreira, Andre L. ;
Torres, Marcelo D. T. ;
de Araujo, William R. ;
de la Fuente-Nunez, Cesar .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (30)
[9]   Graphene Based Waveguide Polarizers: In-Depth Physical Analysis and Relevant Parameters [J].
de Oliveira, Rafael E. P. ;
de Matos, Christiano J. S. .
SCIENTIFIC REPORTS, 2015, 5
[10]   Graphene Enhances the Sensitivity of Fiber-Optic Surface Plasmon Resonance Biosensor [J].
Fu, Hongyan ;
Zhang, Shiwei ;
Chen, Hao ;
Weng, Jian .
IEEE SENSORS JOURNAL, 2015, 15 (10) :5478-5482