Irreducibility of some orthogonal polynomials

被引:1
作者
Akhtari, Sh. [1 ]
Saradha, N. [2 ]
机构
[1] Max Planck Inst Math, D-53111 Bonn, Germany
[2] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2011年 / 21卷 / 3-4期
关键词
Irreducibility; Newton polygons; Hermite-Laguerre polynomials; Thue equations; Pell's equations; LAGUERRE-POLYNOMIALS; SCHUR; I; THEOREM;
D O I
10.1016/j.indag.2011.02.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an explicit upper bound for the degree of reducible generalized Hermite-Laguerre polynomials in some particular cases. (C) 2011 Royal Netherlands Academy of Arts and Sciences. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:127 / 137
页数:11
相关论文
共 19 条
[1]   A generalization of a third irreducibility theorem of I. Schur [J].
Allen, M ;
Filaseta, M .
ACTA ARITHMETICA, 2004, 114 (02) :183-197
[2]   A generalization of a second irreducibility theorem of I. Schur [J].
Allen, M ;
Filaseta, M .
ACTA ARITHMETICA, 2003, 109 (01) :65-79
[3]  
[Anonymous], J REINE ANGEW MATH
[4]  
[Anonymous], 1929, Sitzungsber. Preuss. Akad. Wiss. Berlin Phys.-Math. Kl
[5]  
[Anonymous], 1999, C. R. Math. Acad. Sci. Soc. R. Can
[6]  
[Anonymous], IRREDUCIBILITY UNPUB
[7]  
[Anonymous], 1929, SITZUNGSBER PREUSS A
[8]  
[Anonymous], 1987, L'Enseignement Math
[9]  
[Anonymous], ANAL NUMBER THEORY
[10]  
Dusart P., 1998, Autour de la fonction qui compte le nombre de nombres premiers