Synchronization of fractional-order drive-response complex dynamical networks using scalar signals

被引:0
作者
Zhao Xiao-Wen [1 ]
Wu Yonghong [2 ]
Zhang Xian-He [3 ]
Liu Feng [4 ]
Guan Zhi-Hong [1 ]
机构
[1] Huazhong Univ Sci & Technol, Coll Automat, Wuhan 430074, Peoples R China
[2] Wuhan Univ Technol, Sch Sci, Wuhan 430070, Peoples R China
[3] Hubei Normal Univ, Coll Mechatron & Control Engn, Huangshi 435002, Peoples R China
[4] China Univ Geosci, Sch Automat, Wuhan 430074, Peoples R China
来源
2015 34TH CHINESE CONTROL CONFERENCE (CCC) | 2015年
关键词
Complex dynamical networks; Fractional-order; Synchronization; Scalar signal; PROJECTIVE SYNCHRONIZATION; DELAYS; CALCULUS; FEEDBACK; SYSTEMS; CHAOS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, synchronization of drive-response complex dynamical networks with fractional-order dynamical nodes is discussed. Only scalar signals as the feedback variable are required to be transmitted from the driving network to the response network, which can save a lot of channel resources and has more significant meanings in engineering applications. Based on the Jordan canonical transformation method, some criteria for synchronization of fractional-order drive-response complex dynamical networks are given in the form of normal algebraic inequalities, which can greatly decrease the original computational effort. Finally, a numerical simulation is provided to validate the effectiveness and feasibility of the proposed synchronization criteria.
引用
收藏
页码:6674 / 6678
页数:5
相关论文
共 32 条
[1]   Lyapunov functions for fractional order systems [J].
Aguila-Camacho, Norelys ;
Duarte-Mermoud, Manuel A. ;
Gallegos, Javier A. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (09) :2951-2957
[2]   On fractional order differential equations model for nonlocal epidemics [J].
Ahmed, E. ;
Elgazzar, A. S. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 379 (02) :607-614
[3]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[4]   Robust outer synchronization between two complex networks with fractional order dynamics [J].
Asheghan, Mohammad Mostafa ;
Miguez, Joaquin ;
Hamidi-Beheshti, Mohammad T. ;
Tavazoei, Mohammad Saleh .
CHAOS, 2011, 21 (03)
[5]   Projective synchronization of fractional-order memristor-based neural networks [J].
Bao, Hai-Bo ;
Cao, Jin-De .
NEURAL NETWORKS, 2015, 63 :1-9
[6]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[7]   Phase synchronization of bursting neurons in clustered small-world networks [J].
Batista, C. A. S. ;
Lameu, E. L. ;
Batista, A. M. ;
Lopes, S. R. ;
Pereira, T. ;
Zamora-Lopez, G. ;
Kurths, J. ;
Viana, R. L. .
PHYSICAL REVIEW E, 2012, 86 (01)
[8]   Cluster synchronization in fractional-order complex dynamical networks [J].
Chen, Liping ;
Chai, Yi ;
Wu, Ranchao ;
Sun, Jian ;
Ma, Tiedong .
PHYSICS LETTERS A, 2012, 376 (35) :2381-2388
[9]   Nonlinear dynamics and chaos in a fractional-order financial system [J].
Chen, Wei-Ching .
CHAOS SOLITONS & FRACTALS, 2008, 36 (05) :1305-1314
[10]   Synchronization Between Two Complex Dynamical Networks Using Scalar Signals Under Pinning Control [J].
Fan, Chun-Xia ;
Jiang, Guo-Ping ;
Jiang, Feng-Hua .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2010, 57 (11) :2991-2998