Convergence of first-order methods via the convex conjugate

被引:4
|
作者
Pena, Javier [1 ]
机构
[1] Carnegie Mellon Univ, Tepper Sch Business, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
First-order methods; Conjugate; Acceleration; ALGORITHMS;
D O I
10.1016/j.orl.2017.08.013
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper gives a unified and succinct approach to the O(1/root O, O(1/k), and O(1/k(2)) convergence rates of the subgradient, gradient, and accelerated gradient methods for unconstrained convex minimization. In the three cases the proof of convergence follows from a generic bound defined by the convex conjugate of the objective function. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:561 / 564
页数:4
相关论文
共 50 条
  • [21] Convergence Analysis of ODE Models for Accelerated First-Order Methods via Positive Semidefinite Kernels
    Kim, Jungbin
    Yang, Insoon
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [22] Performance of first-order methods for smooth convex minimization: a novel approach
    Yoel Drori
    Marc Teboulle
    Mathematical Programming, 2014, 145 : 451 - 482
  • [23] Accelerated First-order Methods for Geodesically Convex Optimization on Riemannian Manifolds
    Liu, Yuanyuan
    Shang, Fanhua
    Cheng, James
    Cheng, Hong
    Jiao, Licheng
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [24] Stochastic first-order methods for convex and nonconvex functional constrained optimization
    Digvijay Boob
    Qi Deng
    Guanghui Lan
    Mathematical Programming, 2023, 197 : 215 - 279
  • [25] Iteration-complexity of first-order penalty methods for convex programming
    Lan, Guanghui
    Monteiro, Renato D. C.
    MATHEMATICAL PROGRAMMING, 2013, 138 (1-2) : 115 - 139
  • [26] Iteration-complexity of first-order penalty methods for convex programming
    Guanghui Lan
    Renato D. C. Monteiro
    Mathematical Programming, 2013, 138 : 115 - 139
  • [27] Performance of first-order methods for smooth convex minimization: a novel approach
    Drori, Yoel
    Teboulle, Marc
    MATHEMATICAL PROGRAMMING, 2014, 145 (1-2) : 451 - 482
  • [28] Stochastic first-order methods for convex and nonconvex functional constrained optimization
    Boob, Digvijay
    Deng, Qi
    Lan, Guanghui
    MATHEMATICAL PROGRAMMING, 2023, 197 (01) : 215 - 279
  • [29] General Convergence Analysis of Stochastic First-Order Methods for Composite Optimization
    Necoara, Ion
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2021, 189 (01) : 66 - 95
  • [30] Convergence of First-Order Methods for Constrained Nonconvex Optimization with Dependent Data
    Alacaoglu, Ahmet
    Lyu, Hanbaek
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 202, 2023, 202 : 458 - 489