Lyapunov Control of High-Dimensional Closed Quantum Systems Based on Particle Swarm Optimization

被引:11
作者
Guan, Xiaoke [1 ]
Kuang, Sen [1 ,2 ]
Lu, Xiujuan [1 ]
Yan, Jiazhen [1 ]
机构
[1] Univ Sci & Technol China, Dept Automat, Hefei 230027, Peoples R China
[2] Univ Sci & Technol China, CAS Key Lab Technol Geospatial Informat Proc & Ap, Hefei 230027, Peoples R China
基金
中国国家自然科学基金;
关键词
Lyapunov methods; Sociology; Statistics; Particle swarm optimization; Control systems; Quantum entanglement; High-dimensional quantum systems; Lyapunov control; particle swarm optimization algorithm; parameter optimization; initial values; energy-level connectivity graph; H-INFINITY CONTROL;
D O I
10.1109/ACCESS.2020.2980132
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For high-dimensional closed quantum systems, this paper proposes a novel quantum Lyapunov control scheme based on the particle swarm optimization algorithm and achieves a high-probability population transfer of the system to a non-isolated target eigenstate in the LaSalle invariant set under usual smooth Lyapunov control laws. Via a quadratic Lyapunov function with unknown parameters, a control law with the unknown parameters is designed; based on the LaSalle invariance principle and the energy-level connectivity graph, the stability of the system is analyzed; by using the particle swarm optimization algorithm, a set of optimal parameters is obtained to achieve the control goal. In particular, we propose a path planning method based on the energy-level connectivity graph to determine the initial values of the unknown parameters, which is such that the optimization algorithm can efficiently and conveniently find a set of optimal solutions of the unknown parameters. Numerical simulation experiments on a five-level quantum system and a three-qubit system demonstrate that the proposed Lyapunov control scheme based on the particle swarm optimization algorithm has a good control effect.
引用
收藏
页码:49765 / 49774
页数:10
相关论文
共 39 条
[1]   Feedback stabilization of isospectral control systems on complex flag manifolds: Application to quantum ensembles [J].
Altafini, Claudio .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (11) :2019-2028
[2]   Modeling and Control of Quantum Systems: An Introduction [J].
Altafini, Claudio ;
Ticozzi, Francesco .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (08) :1898-1917
[3]  
[Anonymous], IEEE T CYBERN
[4]   Implicit Lyapunov control of finite dimensional Schrodinger equations [J].
Beauchard, Karine ;
Coron, Jean Michel ;
Mirrahimi, Mazyar ;
Rouchon, Pierre .
SYSTEMS & CONTROL LETTERS, 2007, 56 (05) :388-395
[5]   Rapid Lyapunov control for decoherence-free subspaces of Markovian open quantum systems [J].
Chen, Mengxi ;
Kuang, Sen ;
Cong, Shuang .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (01) :439-455
[6]  
DAlessandro D., 2007, Introduction to Quantum Control and Dynamics
[7]   High-fidelity spin entanglement using optimal control [J].
Dolde, Florian ;
Bergholm, Ville ;
Wang, Ya ;
Jakobi, Ingmar ;
Naydenov, Boris ;
Pezzagna, Sebastien ;
Meijer, Jan ;
Jelezko, Fedor ;
Neumann, Philipp ;
Schulte-Herbrueggen, Thomas ;
Biamonte, Jacob ;
Wrachtrup, Joerg .
NATURE COMMUNICATIONS, 2014, 5
[8]   Quantum control theory and applications: a survey [J].
Dong, D. ;
Petersen, I. R. .
IET CONTROL THEORY AND APPLICATIONS, 2010, 4 (12) :2651-2671
[9]   Sliding mode control of two-level quantum systems [J].
Dong, Daoyi ;
Petersen, Ian R. .
AUTOMATICA, 2012, 48 (05) :725-735
[10]   Sliding mode control of quantum systems [J].
Dong, Daoyi ;
Petersen, Ian R. .
NEW JOURNAL OF PHYSICS, 2009, 11