Generalized augmented Lagrangian problem and approximate optimal solutions in nonlinear programming

被引:20
作者
Chen, Zhe [1 ]
Zhao, Kequan [1 ]
Chen, Yuke [1 ]
机构
[1] Chongqing Normal Univ, Dept Math & Comp Sci, Chongqing 400047, Peoples R China
关键词
D O I
10.1155/2007/19323
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce some approximate optimal solutions and a generalized augmented Lagrangian in nonlinear programming, establish dual function and dual problem based on the generalized augmented Lagrangian, obtain approximate KKT necessary optimality condition of the generalized augmented Lagrangian dual problem, prove that the approximate stationary points of generalized augmented Lagrangian problem converge to that of the original problem. Our results improve and generalize some known results. Copyright (C) 2007.
引用
收藏
页数:12
相关论文
共 15 条
[1]  
Chen GY, 2005, LECT NOTES ECON MATH, V541, P1, DOI 10.1007/3-540-28445-1
[2]  
Clarke F.H., 1983, CANADIAN MATH SOC SE
[3]   An augmented Lagrangian function with improved exactness properties [J].
Di Pillo, G ;
Lucidi, S .
SIAM JOURNAL ON OPTIMIZATION, 2001, 12 (02) :376-406
[4]   VARIATIONAL PRINCIPLE [J].
EKELAND, I .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 47 (02) :324-353
[5]   Further study on augmented Lagrangian duality theory [J].
Huang, XX ;
Yang, XQ .
JOURNAL OF GLOBAL OPTIMIZATION, 2005, 31 (02) :193-210
[6]   A unified augmented Lagrangian approach to duality and exact penalization [J].
Huang, XX ;
Yang, XQ .
MATHEMATICS OF OPERATIONS RESEARCH, 2003, 28 (03) :533-552
[7]   Duality and exact penalization for vector optimization via augmented Lagrangian [J].
Huang, XX ;
Yang, XQ .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2001, 111 (03) :615-640
[8]   Approximate optimal solutions and nonlinear Lagrangian functions [J].
Huang, XX ;
Yang, XQ .
JOURNAL OF GLOBAL OPTIMIZATION, 2001, 21 (01) :51-65
[9]   EPSILON-DUALITY THEOREM OF NONDIFFERENTIABLE NONCONVEX MULTIOBJECTIVE PROGRAMMING [J].
LIU, JC .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1991, 69 (01) :153-167
[10]  
LORIDAN P, 1982, MATH PROGRAM STUD, V19, P140, DOI 10.1007/BFb0120986