Quantification of pulmonary involvement in COVID-19 pneumonia by means of a cascade of two U-nets: training and assessment on multiple datasets using different annotation criteria

被引:9
作者
Lizzi, Francesca [1 ,2 ]
Agosti, Abramo [3 ]
Brero, Francesca [4 ,5 ]
Cabini, Raffaella Fiamma [4 ,6 ]
Fantacci, Maria Evelina [2 ,3 ]
Figini, Silvia [4 ,11 ]
Lascialfari, Alessandro [4 ,5 ]
Laruina, Francesco [1 ,2 ]
Oliva, Piernicola [8 ,9 ]
Piffer, Stefano [7 ,10 ]
Postuma, Ian [4 ]
Rinaldi, Lisa [4 ,5 ]
Talamonti, Cinzia [7 ,10 ]
Retico, Alessandra [2 ]
机构
[1] Scuola Normale Super Pisa, Pisa, Italy
[2] Natl Inst Nucl Phys INFN, Pisa Div, Pisa, Italy
[3] Univ Pisa, Dept Phys, Pisa, Italy
[4] Ist Nazl Fis Nucl, Pavia Div, Pavia, Italy
[5] Univ Pavia, Dept Phys, Pavia, Italy
[6] Univ Pavia, Dept Math, Pavia, Italy
[7] Univ Florence, Dept Biomed Expt Clin Sci M Serio, Florence, Italy
[8] Univ Sassari, Dept Chem & Pharm, Sassari, Italy
[9] Ist Nazl Fis Nucl, Cagliari Div, Cagliari, Italy
[10] Ist Nazl Fis Nucl, Florence Div, Florence, Italy
[11] Univ Pavia, Dept Social & Polit Sci, Pavia, Italy
关键词
COVID-19; Chest Computed Tomography; Ground-glass opacities; Segmentation; Machine Learning; U-net;
D O I
10.1007/s11548-021-02501-2
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Purpose This study aims at exploiting artificial intelligence (AI) for the identification, segmentation and quantification of COVID-19 pulmonary lesions. The limited data availability and the annotation quality are relevant factors in training AI-methods. We investigated the effects of using multiple datasets, heterogeneously populated and annotated according to different criteria. Methods We developed an automated analysis pipeline, the LungQuant system, based on a cascade of two U-nets. The first one (U-net(1)) is devoted to the identification of the lung parenchyma; the second one (U-net(2)) acts on a bounding box enclosing the segmented lungs to identify the areas affected by COVID-19 lesions. Different public datasets were used to train the U-nets and to evaluate their segmentation performances, which have been quantified in terms of the Dice Similarity Coefficients. The accuracy in predicting the CT-Severity Score (CT-SS) of the LungQuant system has been also evaluated. Results Both the volumetric DSC (vDSC) and the accuracy showed a dependency on the annotation quality of the released data samples. On an independent dataset (COVID-19-CT-Seg), both the vDSC and the surface DSC (sDSC) were measured between the masks predicted by LungQuant system and the reference ones. The vDSC (sDSC) values of 0.95 +/- 0.01 and 0.66 +/- 0.13 (0.95 +/- 0.02 and 0.76 +/- 0.18, with 5 mm tolerance) were obtained for the segmentation of lungs and COVID-19 lesions, respectively. The system achieved an accuracy of 90% in CT-SS identification on this benchmark dataset. Conclusion We analysed the impact of using data samples with different annotation criteria in training an AI-based quantification system for pulmonary involvement in COVID-19 pneumonia. In terms of vDSC measures, the U-net segmentation strongly depends on the quality of the lesion annotations. Nevertheless, the CT-SS can be accurately predicted on independent test sets, demonstrating the satisfactory generalization ability of the LungQuant.
引用
收藏
页码:229 / 237
页数:9
相关论文
共 13 条
[1]   Chest CT features of coronavirus disease 2019 (COVID-19) pneumonia: key points for radiologists [J].
Carotti, Marina ;
Salaffi, Fausto ;
Sarzi-Puttini, Piercarlo ;
Agostini, Andrea ;
Borgheresi, Alessandra ;
Minorati, Davide ;
Galli, Massimo ;
Marotto, Daniela ;
Giovagnoni, Andrea .
RADIOLOGIA MEDICA, 2020, 125 (07) :636-646
[2]  
Chollet F, 2015, KERAS
[3]   Multi-Organ Segmentation Over Partially Labeled Datasets With Multi-Scale Feature Abstraction [J].
Fang, Xi ;
Yan, Pingkun .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (11) :3619-3629
[4]   Association of AI quantified COVID-19 chest CT and patient outcome [J].
Fang, Xi ;
Kruger, Uwe ;
Homayounieh, Fatemeh ;
Chao, Hanqing ;
Zhang, Jiajin ;
Digumarthy, Subba R. ;
Arru, Chiara D. ;
Kalra, Mannudeep K. ;
Yan, Pingkun .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2021, 16 (03) :435-445
[5]   Harmonization of cortical thickness measurements across scanners and sites [J].
Fortin, Jean-Philippe ;
Cullen, Nicholas ;
Sheline, Yvette I. ;
Taylor, Warren D. ;
Aselcioglu, Irem ;
Cook, Philip A. ;
Adams, Phil ;
Cooper, Crystal ;
Fava, Maurizio ;
McGrath, Patrick J. ;
McInnis, Melvin ;
Phillips, Mary L. ;
Trivedi, Madhukar H. ;
Weissman, Myrna M. ;
Shinohara, Russell T. .
NEUROIMAGE, 2018, 167 :104-120
[6]  
Hofmanninger J., 2020, arXiv preprint arXiv:200111767
[7]   Novel Autosegmentation Spatial Similarity Metrics Capture the Time Required to Correct Segmentations Better Than Traditional Metrics in a Thoracic Cavity Segmentation Workflow [J].
Kiser, Kendall J. ;
Barman, Arko ;
Stieb, Sonja ;
Fuller, Clifton D. ;
Giancardo, Luca .
JOURNAL OF DIGITAL IMAGING, 2021, 34 (03) :541-553
[8]   PleThora: Pleural effusion and thoracic cavity segmentations in diseased lungs for benchmarking chest CT processing pipelines [J].
Kiser, Kendall J. ;
Ahmed, Sara ;
Stieb, Sonja ;
Mohamed, Abdallah S. R. ;
Elhalawani, Hesham ;
Park, Peter Y. S. ;
Doyle, Nathan S. ;
Wang, Brandon J. ;
Barman, Arko ;
Li, Zhao ;
Zheng, W. Jim ;
Fuller, Clifton D. ;
Giancardo, Luca .
MEDICAL PHYSICS, 2020, 47 (11) :5941-5952
[9]   Automated Assessment of COVID-19 Reporting and Data System and Chest CT Severity Scores in Patients Suspected of Having COVID-19 Using Artificial Intelligence [J].
Lessmann, Nikolas ;
Sanchez, Clara, I ;
Beenen, Ludo ;
Boulogne, Luuk H. ;
Brink, Monique ;
Calli, Erdi ;
Charbonnier, Jean-Paul ;
Dofferhoff, Ton ;
van Everdingen, Wouter M. ;
Gerke, Paul K. ;
Geurts, Bram ;
Gietema, Hester A. ;
Groeneveld, Miriam ;
van Harten, Louis ;
Hendrix, Nils ;
Hendrix, Ward ;
Huisman, Henkjan J. ;
Isgum, Ivana ;
Jacobs, Colin ;
Kluge, Ruben ;
Kok, Michel ;
Krdzalic, Jasenko ;
Lassen-Schmidt, Bianca ;
van Leeuwen, Kicky ;
Meakin, James ;
Overkamp, Mike ;
Vellinga, Tjalco van Rees ;
van Rikxoort, Eva M. ;
Samperna, Riccardo ;
Schaefer-Prokop, Cornelia ;
Schalekamp, Steven ;
Scholten, Ernst Th ;
Sital, Cheryl ;
Stoeger, J. Lauran ;
Teuwen, Jonas ;
Venkadesh, Kiran Vaidhya ;
de Vente, Coen ;
Vermaat, Marieke ;
Xie, Weiyi ;
de Wilde, Bram ;
Prokop, Mathias ;
van Ginneken, Bram .
RADIOLOGY, 2021, 298 (01) :E18-E28
[10]   Spatial feature fusion convolutional network for liver and liver tumor segmentation from CT images [J].
Liu, Tianyu ;
Liu, Junchi ;
Ma, Yan ;
He, Jiangping ;
Han, Jincang ;
Ding, Xiaoyang ;
Chen, Chin-Tu .
MEDICAL PHYSICS, 2021, 48 (01) :264-272