Efficient Model Predictive Control for Nonlinear Systems via Function Approximation Techniques

被引:20
作者
Canale, Massimo [1 ]
Fagiano, Lorenzo [1 ]
Milanese, Mario [1 ]
机构
[1] Politecn Torino, Dipartimento Automat & Informat, I-10129 Turin, Italy
关键词
Approximate predictive control; constrained control; nonlinear model predictive control (NMPC);
D O I
10.1109/TAC.2010.2049776
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This note deals with the problem of fast implementation of nonlinear model predictive control using approximated control laws. At first, accuracy properties of a generic approximated controller are introduced together with their influence on closed loop stability and performance. Then, exploiting such results, it is shown how Set Membership (SM) function approximation theory can be systematically employed to improve the accuracy performance of. The resulting controller, given by the sum of with a SM approximating function, satisfies the above--mentioned properties even if they are not met by alone. A nonlinear oscillator example shows the effectiveness of the proposed methodology.
引用
收藏
页码:1911 / 1916
页数:7
相关论文
共 15 条
[1]   Every continuous nonlinear control system can be obtained by parametric convex programming [J].
Baes, Michel ;
Diehl, Moritz ;
Necoara, Ion .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2008, 53 (08) :1963-1967
[2]   Interpolation of Lipschitz functions [J].
Beliakov, Gleb .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 196 (01) :20-44
[3]   Set Membership approximation theory for fast implementation of Model Predictive Control laws [J].
Canale, M. ;
Fagiano, L. ;
Milanese, M. .
AUTOMATICA, 2009, 45 (01) :45-54
[4]   Robust explicit MPC based on approximate multiparametric convex programming [J].
de la Pena, D. Munoz ;
Bemporad, Alberto ;
Filippi, Carlo .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (08) :1399-1403
[5]   Examples when nonlinear model predictive control is nonrobust [J].
Grimm, G ;
Messina, MJ ;
Tuna, SE ;
Teel, AR .
AUTOMATICA, 2004, 40 (10) :1729-1738
[6]   Approximate explicit receding horizon control of constrained nonlinear systems [J].
Johansen, TA .
AUTOMATICA, 2004, 40 (02) :293-300
[7]   Approximate explicit constrained linear model predictive control via orthogonal search tree [J].
Johansen, TA ;
Grancharova, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (05) :810-815
[8]  
Jordan D.W., 1987, NONLINEAR ORDINARY D
[9]   Constrained model predictive control: Stability and optimality [J].
Mayne, DQ ;
Rawlings, JB ;
Rao, CV ;
Scokaert, POM .
AUTOMATICA, 2000, 36 (06) :789-814
[10]   Computation of local radius of information in SM-IBC identification of nonlinear systems [J].
Milanese, Mario ;
Novara, Carlo .
JOURNAL OF COMPLEXITY, 2007, 23 (4-6) :937-951