Rovibrational spectrum and potential energy surface of the N2-N2O van der Waals complex

被引:9
|
作者
Zheng, Rui [1 ]
Zhu, Yu [1 ]
Li, Song [1 ]
Fang, Min [1 ]
Duan, Chuanxi [1 ]
机构
[1] Huazhong Normal Univ, Coll Phys Sci & Technol, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Rovibrational spectrum; van der Waals complex; N-2-N2O; CM(-1) REGION; SPECTROSCOPY; CO-N2O;
D O I
10.1016/j.jms.2011.01.003
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
The rovibrational spectrum of the N-2-N2O van der Waals complex has been recorded in the N2O nu(1) region (similar to 1285 cm(-1)) using a tunable diode laser spectrometer to probe a pulsed supersonic slit jet. The observed transitions together with the data observed previously in the N2O nu(3) region are analyzed using a Watson S-reduced asymmetric rotor Hamiltonian. The rotational and centrifugal distortion constants for the ground and excited vibrational states are accurately determined. The band-origin of the spectrum is determined to be 1285.73964(14) cm(-1). A restricted two-dimensional intermolecular potential energy surface for a planar structure of N-2-N2O has been calculated at the CCSD(T) level of theory with the aug-cc-pVDZ basis sets and a set of mid-bond functions. With the intermolecular distance fixed at the ground state value R = 3.6926 angstrom, the potential has a global minimum with a well depth of 326.64 cm(-1) at 0(N2) = 11.0 degrees and 0(N2O) = 84.3 degrees and has a saddle point with a barrier height of 204.61 cm(-1) at 0(N2) = 97.4 degrees and 0(N2O) = 92.2 degrees, where 0(N2) (0(N2O)) is the enclosed angle between the N-N axis (N-N-O axis) and the intermolecular axis. (c) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:102 / 105
页数:4
相关论文
共 50 条
  • [31] Rovibrational analysis of the water bending vibration in the mid-infrared spectrum of atmospherically significant N2-H2O complex
    Springer, S. D.
    McElmurry, B. A.
    Wang, Z.
    Leonov, I. I.
    Lucchese, R. R.
    Bevan, J. W.
    Coudert, L. H.
    CHEMICAL PHYSICS LETTERS, 2015, 633 : 229 - 233
  • [32] Microwave spectra and nuclear quadrupole structure of the NH3-N2 van der Waals complex and its deuterated isotopologues
    Surin, Leonid
    Tarabukin, Ivan
    Perez, Cristobal
    Schnell, Melanie
    JOURNAL OF CHEMICAL PHYSICS, 2018, 149 (22)
  • [33] Intermolecular vibrational states far above the van der Waals minimum: Combination bands of the polar N2O dimer
    McKellar, A. R. W.
    Moazzen-Ahmadi
    JOURNAL OF MOLECULAR SPECTROSCOPY, 2021, 377
  • [34] Rovibrational spectra of nonpolar (N2O)2 and Ar-N2O complexes in the 2v2 overtone region of N2O
    Li, Xiang
    Liu, Zhuang
    Duan, Chuanxi
    JOURNAL OF MOLECULAR SPECTROSCOPY, 2021, 377
  • [35] Rovibrational spectra of SO2-containing van der Waals complexes in the v1 region of SO2. Part I. N2-SO2 and OC-SO2
    Li, Xiang
    Zhu, Tianxin
    Pu, Yuanyuan
    Duan, Chuanxi
    JOURNAL OF MOLECULAR SPECTROSCOPY, 2022, 390
  • [36] Ab initio calculation of the structure and infrared spectra of the van der Waals complex H2O•F2
    Wang, WF
    Sirota, JM
    Reuter, DC
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2001, 541 : 31 - 37
  • [37] Theoretical study of H2...I- van der Waals anion complex
    Ilcin, M
    Lukes, V
    Laurinc, V
    Biskupic, S
    COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS, 2005, 70 (06) : 797 - 810
  • [38] Torsional excitation in the 2CH vibrational overtone of the C2H2-CO2 and C2H2-N2O van der Waals complexes
    Lauzin, C.
    Didriche, K.
    Foldes, T.
    Herman, M.
    MOLECULAR PHYSICS, 2011, 109 (17-18) : 2105 - 2109
  • [39] Theory Untangles the High-Resolution Infrared Spectrum of the ortho-H2-CO van der Waals Complex
    Jankowski, Piotr
    McKellar, A. R. W.
    Szalewicz, Krzysztof
    SCIENCE, 2012, 336 (6085) : 1147 - 1150
  • [40] Surface oxidation in a van der Waals ferromagnet Fe3-xGeTe2
    Kim, Dong Seob
    Kee, Jung Yun
    Lee, Ji-Eun
    Liu, Yu
    Kim, Younghak
    Kim, Namdong
    Hwang, Choongyu
    Kim, Wondong
    Petrovic, Cedomir
    Lee, Dong Ryeol
    Jang, Chaun
    Ryu, Hyejin
    Choi, Jun Woo
    CURRENT APPLIED PHYSICS, 2021, 30 (30) : 40 - 45