Memory devices and applications for in-memory computing

被引:1544
作者
Sebastian, Abu [1 ]
Le Gallo, Manuel [1 ]
Khaddam-Aljameh, Riduan [1 ]
Eleftheriou, Evangelos [1 ]
机构
[1] IBM Res Zurich, Ruschlikon, Switzerland
基金
欧洲研究理事会;
关键词
PHASE-CHANGE MATERIALS; DEEP NEURAL-NETWORKS; LOGIC; DESIGN; SPIN; ACCELERATOR; GENERATION; SWITCHES; SYNAPSE; SIGNAL;
D O I
10.1038/s41565-020-0655-z
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Traditional von Neumann computing systems involve separate processing and memory units. However, data movement is costly in terms of time and energy and this problem is aggravated by the recent explosive growth in highly data-centric applications related to artificial intelligence. This calls for a radical departure from the traditional systems and one such non-von Neumann computational approach is in-memory computing. Hereby certain computational tasks are performed in place in the memory itself by exploiting the physical attributes of the memory devices. Both charge-based and resistance-based memory devices are being explored for in-memory computing. In this Review, we provide a broad overview of the key computational primitives enabled by these memory devices as well as their applications spanning scientific computing, signal processing, optimization, machine learning, deep learning and stochastic computing. This Review provides an overview of memory devices and the key computational primitives for in-memory computing, and examines the possibilities of applying this computing approach to a wide range of applications.
引用
收藏
页码:529 / 544
页数:16
相关论文
共 180 条
[81]   STDP-based spiking deep convolutional neural networks for object recognition [J].
Kheradpisheh, Saeed Reza ;
Ganjtabesh, Mohammad ;
Thorpe, Simon J. ;
Masquelier, Timothee .
NEURAL NETWORKS, 2018, 99 :56-67
[82]   Basic principles of STT-MRAM cell operation in memory arrays [J].
Khvalkovskiy, A. V. ;
Apalkov, D. ;
Watts, S. ;
Chepulskii, R. ;
Beach, R. S. ;
Ong, A. ;
Tang, X. ;
Driskill-Smith, A. ;
Butler, W. H. ;
Visscher, P. B. ;
Lottis, D. ;
Chen, E. ;
Nikitin, V. ;
Krounbi, M. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (07)
[83]  
Kim JT, 2014, IOP CONCISE PHYS, P1, DOI 10.1088/978-1-6270-5678-6
[84]   Single-Cell Stateful Logic Using a Dual-Bit Memristor [J].
Kim, Kyung Min ;
Xu, Nuo ;
Shao, Xinglong ;
Yoon, Kyung Jean ;
Kim, Hae Jin ;
Williams, R. Stanley ;
Hwang, Cheol Seong .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2019, 13 (03)
[85]  
Kim T, 2015, 2015 28TH IEEE INTERNATIONAL SYSTEM-ON-CHIP CONFERENCE (SOCC), P170, DOI 10.1109/SOCC.2015.7406934
[86]   Complementary ferroelectric-capacitor logic for low-power logic-in-memory VLSI [J].
Kimura, H ;
Hanyu, T ;
Kameyama, M ;
Fujimori, Y ;
Nakamura, T ;
Takasu, H .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2004, 39 (06) :919-926
[87]   Projected phase-change memory devices [J].
Koelmans, Wabe W. ;
Sebastian, Abu ;
Jonnalagadda, Vara Prasad ;
Krebs, Daniel ;
Dellmann, Laurent ;
Eleftheriou, Evangelos .
NATURE COMMUNICATIONS, 2015, 6
[88]   Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing [J].
Kumar, Suhas ;
Strachan, John Paul ;
Williams, R. S. Tanley .
NATURE, 2017, 548 (7667) :318-321
[89]   Nanoelectronic Programmable Synapses Based on Phase Change Materials for Brain-Inspired Computing [J].
Kuzum, Duygu ;
Jeyasingh, Rakesh G. D. ;
Lee, Byoungil ;
Wong, H. -S. Philip .
NANO LETTERS, 2012, 12 (05) :2179-2186
[90]   MAGIC-Memristor-Aided Logic [J].
Kvatinsky, Shahar ;
Belousov, Dmitry ;
Liman, Slavik ;
Satat, Guy ;
Wald, Nimrod ;
Friedman, Eby G. ;
Kolodny, Avinoam ;
Weiser, Uri C. .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2014, 61 (11) :895-899