Memory devices and applications for in-memory computing

被引:1362
作者
Sebastian, Abu [1 ]
Le Gallo, Manuel [1 ]
Khaddam-Aljameh, Riduan [1 ]
Eleftheriou, Evangelos [1 ]
机构
[1] IBM Res Zurich, Ruschlikon, Switzerland
基金
欧洲研究理事会;
关键词
PHASE-CHANGE MATERIALS; DEEP NEURAL-NETWORKS; LOGIC; DESIGN; SPIN; ACCELERATOR; GENERATION; SWITCHES; SYNAPSE; SIGNAL;
D O I
10.1038/s41565-020-0655-z
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Traditional von Neumann computing systems involve separate processing and memory units. However, data movement is costly in terms of time and energy and this problem is aggravated by the recent explosive growth in highly data-centric applications related to artificial intelligence. This calls for a radical departure from the traditional systems and one such non-von Neumann computational approach is in-memory computing. Hereby certain computational tasks are performed in place in the memory itself by exploiting the physical attributes of the memory devices. Both charge-based and resistance-based memory devices are being explored for in-memory computing. In this Review, we provide a broad overview of the key computational primitives enabled by these memory devices as well as their applications spanning scientific computing, signal processing, optimization, machine learning, deep learning and stochastic computing. This Review provides an overview of memory devices and the key computational primitives for in-memory computing, and examines the possibilities of applying this computing approach to a wide range of applications.
引用
收藏
页码:529 / 544
页数:16
相关论文
共 180 条
[11]  
BEKAS C, 2009, P 2 WORKSH HIGH PERF, P1
[12]   Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations [J].
Benjamin, Ben Varkey ;
Gao, Peiran ;
McQuinn, Emmett ;
Choudhary, Swadesh ;
Chandrasekaran, Anand R. ;
Bussat, Jean-Marie ;
Alvarez-Icaza, Rodrigo ;
Arthur, John V. ;
Merolla, Paul A. ;
Boahen, Kwabena .
PROCEEDINGS OF THE IEEE, 2014, 102 (05) :699-716
[13]   Visual Pattern Extraction Using Energy-Efficient "2-PCM Synapse" Neuromorphic Architecture [J].
Bichler, Olivier ;
Suri, Manan ;
Querlioz, Damien ;
Vuillaume, Dominique ;
DeSalvo, Barbara ;
Gamrat, Christian .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2012, 59 (08) :2206-2214
[14]   CONV-SRAM: An Energy-Efficient SRAM With In-Memory Dot-Product Computation for Low-Power Convolutional Neural Networks [J].
Biswas, Avishek ;
Chandrakasan, Anantha P. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2019, 54 (01) :217-230
[15]  
Bojnordi MN, 2016, INT S HIGH PERF COMP, P1, DOI 10.1109/HPCA.2016.7446049
[16]   'Memristive' switches enable 'stateful' logic operations via material implication [J].
Borghetti, Julien ;
Snider, Gregory S. ;
Kuekes, Philip J. ;
Yang, J. Joshua ;
Stewart, Duncan R. ;
Williams, R. Stanley .
NATURE, 2010, 464 (7290) :873-876
[17]   Neuromorphic computing with multi-memristive synapses [J].
Boybat, Irem ;
Le Gallo, Manuel ;
Nandakumar, S. R. ;
Moraitis, Timoleon ;
Parnell, Thomas ;
Tuma, Tomas ;
Rajendran, Bipin ;
Leblebici, Yusuf ;
Sebastian, Abu ;
Eleftheriou, Evangelos .
NATURE COMMUNICATIONS, 2018, 9
[18]   Role of Al doping in the filament disruption in HfO2 resistance switches [J].
Brivio, Stefano ;
Frascaroli, Jacopo ;
Spiga, Sabina .
NANOTECHNOLOGY, 2017, 28 (39)
[19]   Neuromorphic computing using non-volatile memory [J].
Burr, Geoffrey W. ;
Shelby, Robert M. ;
Sebastian, Abu ;
Kim, Sangbum ;
Kim, Seyoung ;
Sidler, Severin ;
Virwani, Kumar ;
Ishii, Masatoshi ;
Narayanan, Pritish ;
Fumarola, Alessandro ;
Sanches, Lucas L. ;
Boybat, Irem ;
Le Gallo, Manuel ;
Moon, Kibong ;
Woo, Jiyoo ;
Hwang, Hyunsang ;
Leblebici, Yusuf .
ADVANCES IN PHYSICS-X, 2017, 2 (01) :89-124
[20]   Recent Progress in Phase-Change Memory Technology [J].
Burr, Geoffrey W. ;
Brightsky, Matthew J. ;
Sebastian, Abu ;
Cheng, Huai-Yu ;
Wu, Jau-Yi ;
Kim, Sangbum ;
Sosa, Norma E. ;
Papandreou, Nikolaos ;
Lung, Hsiang-Lan ;
Pozidis, Haralampos ;
Eleftheriou, Evangelos ;
Lam, Chung H. .
IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2016, 6 (02) :146-162