Memory devices and applications for in-memory computing

被引:1362
作者
Sebastian, Abu [1 ]
Le Gallo, Manuel [1 ]
Khaddam-Aljameh, Riduan [1 ]
Eleftheriou, Evangelos [1 ]
机构
[1] IBM Res Zurich, Ruschlikon, Switzerland
基金
欧洲研究理事会;
关键词
PHASE-CHANGE MATERIALS; DEEP NEURAL-NETWORKS; LOGIC; DESIGN; SPIN; ACCELERATOR; GENERATION; SWITCHES; SYNAPSE; SIGNAL;
D O I
10.1038/s41565-020-0655-z
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Traditional von Neumann computing systems involve separate processing and memory units. However, data movement is costly in terms of time and energy and this problem is aggravated by the recent explosive growth in highly data-centric applications related to artificial intelligence. This calls for a radical departure from the traditional systems and one such non-von Neumann computational approach is in-memory computing. Hereby certain computational tasks are performed in place in the memory itself by exploiting the physical attributes of the memory devices. Both charge-based and resistance-based memory devices are being explored for in-memory computing. In this Review, we provide a broad overview of the key computational primitives enabled by these memory devices as well as their applications spanning scientific computing, signal processing, optimization, machine learning, deep learning and stochastic computing. This Review provides an overview of memory devices and the key computational primitives for in-memory computing, and examines the possibilities of applying this computing approach to a wide range of applications.
引用
收藏
页码:529 / 544
页数:16
相关论文
共 180 条
[1]   Compute Caches [J].
Aga, Shaizeen ;
Jeloka, Supreet ;
Subramaniyan, Arun ;
Narayanasamy, Satish ;
Blaauw, David ;
Das, Reetuparna .
2017 23RD IEEE INTERNATIONAL SYMPOSIUM ON HIGH PERFORMANCE COMPUTER ARCHITECTURE (HPCA), 2017, :481-492
[2]  
Agarwal S, 2017, S VLSI TECH, pT174, DOI 10.23919/VLSIT.2017.7998164
[3]   Survey of Stochastic Computing [J].
Alaghi, Armin ;
Hayes, John P. .
ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS, 2013, 12
[4]   Pattern classification by memristive crossbar circuits using ex situ and in situ training [J].
Alibart, Fabien ;
Zamanidoost, Elham ;
Strukov, Dmitri B. .
NATURE COMMUNICATIONS, 2013, 4
[5]   Equivalent-accuracy accelerated neural-network training using analogue memory [J].
Ambrogio, Stefano ;
Narayanan, Pritish ;
Tsai, Hsinyu ;
Shelby, Robert M. ;
Boybat, Irem ;
di Nolfo, Carmelo ;
Sidler, Severin ;
Giordano, Massimo ;
Bodini, Martina ;
Farinha, Nathan C. P. ;
Killeen, Benjamin ;
Cheng, Christina ;
Jaoudi, Yassine ;
Burr, Geoffrey W. .
NATURE, 2018, 558 (7708) :60-+
[6]   PUMA: A Programmable Ultra-efficient Memristor-based Accelerator for Machine Learning Inference [J].
Ankit, Aayush ;
El Hajj, Izzat ;
Chalamalasetti, Sai Rahul ;
Ndu, Geoffrey ;
Foltin, Martin ;
Williams, R. Stanley ;
Faraboschi, Paolo ;
Hwu, Wen-mei ;
Strachan, John Paul ;
Roy, Kaushik ;
Milojicic, Dejan S. .
TWENTY-FOURTH INTERNATIONAL CONFERENCE ON ARCHITECTURAL SUPPORT FOR PROGRAMMING LANGUAGES AND OPERATING SYSTEMS (ASPLOS XXIV), 2019, :715-731
[7]  
Aziz A, 2018, DES AUT TEST EUROPE, P1289, DOI 10.23919/DATE.2018.8342213
[8]   Physical Unbiased Generation of Random Numbers With Coupled Resistive Switching Devices [J].
Balatti, Simone ;
Ambrogio, Stefano ;
Carboni, Roberto ;
Milo, Valerio ;
Wang, Zhongqiang ;
Calderoni, Alessandro ;
Ramaswamy, Nirmal ;
Ielmini, Daniele .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2016, 63 (05) :2029-2035
[9]   An Always-On 3.8 μJ/86% CIFAR-10 Mixed-Signal Binary CNN Processor With All Memory on Chip in 28-nm CMOS [J].
Bankman, Daniel ;
Yang, Lita ;
Moons, Bert ;
Verhelst, Marian ;
Murmann, Boris .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2019, 54 (01) :158-172
[10]   Reproducible switching effect in thin oxide films for memory applications [J].
Beck, A ;
Bednorz, JG ;
Gerber, C ;
Rossel, C ;
Widmer, D .
APPLIED PHYSICS LETTERS, 2000, 77 (01) :139-141