A coherent structure approach for parameter estimation in Lagrangian Data Assimilation

被引:12
作者
Maclean, John [1 ,2 ]
Santitissadeekorn, Naratip [3 ]
Jones, Christopher K. R. T. [1 ,2 ]
机构
[1] Univ North Carolina Chapel Hill, Dept Math, Chapel Hill, NC 27599 USA
[2] Univ North Carolina Chapel Hill, RENCI, Chapel Hill, NC 27599 USA
[3] Univ Surrey, Dept Math, Guildford, Surrey, England
关键词
Data assimilation; Lagrangian data; Coherent structures; SEQUENTIAL MONTE-CARLO; ALMOST-INVARIANT SETS; SURFACE CIRCULATION; PARTICLE FILTER;
D O I
10.1016/j.physd.2017.08.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a data assimilation method to estimate model parameters with observations of passive tracers by directly assimilating Lagrangian Coherent Structures. Our approach differs from the usual Lagrangian Data Assimilation approach, where parameters are estimated based on tracer trajectories. We employ the Approximate Bayesian Computation (ABC) framework to avoid computing the likelihood function of the coherent structure, which is usually unavailable. We solve the ABC by a Sequential Monte Carlo (SMC) method, and use Principal Component Analysis (PCA) to identify the coherent patterns from tracer trajectory data. Our new method shows remarkably improved results compared to the bootstrap particle filter when the physical model exhibits chaotic advection. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:36 / 45
页数:10
相关论文
共 55 条
[1]  
[Anonymous], THESIS
[2]  
[Anonymous], 2012, STAT COMPUT
[3]  
[Anonymous], 1996, Markov Processes and Related Fields
[4]  
Apte A, 2008, TELLUS A, V60, P336, DOI 10.1111/J.1600-0870.2007.00295.X
[5]   The impact of nonlinearity in Lagrangian data assimilation [J].
Apte, A. ;
Jones, C. K. R. T. .
NONLINEAR PROCESSES IN GEOPHYSICS, 2013, 20 (03) :329-341
[6]  
Banisch R., 2016, ARXIV160304709V2
[7]   Adaptive approximate Bayesian computation [J].
Beaumont, Mark A. ;
Cornuet, Jean-Marie ;
Marin, Jean-Michel ;
Robert, Christian P. .
BIOMETRIKA, 2009, 96 (04) :983-990
[8]   Phase-space transport of stochastic chaos in population dynamics of virus spread [J].
Billings, L ;
Bollt, EM ;
Schwartz, IB .
PHYSICAL REVIEW LETTERS, 2002, 88 (23) :2341011-2341014
[9]  
Bollt E.M., 2013, MATH MODELING COMPUT
[10]  
Collecte Localisation Satellites, ARG US MAN WORLDW TR