Aggregate structural changes in silica aerogels with temperature

被引:0
|
作者
Guo, Chenning [1 ]
Huang, Dongmei [1 ,2 ,3 ]
Lin, Peng [2 ,3 ]
机构
[1] China Jiliang Univ, Coll Qual & Safety Engn, Hangzhou, Zhejiang, Peoples R China
[2] Key Lab Furniture Inspect Technol Zhejiang Prov, Hangzhou, Zhejiang, Peoples R China
[3] Zhejiang Furniture & Hardware Res Inst, Hangzhou, Zhejiang, Peoples R China
关键词
molecular structure; morphology; nanoparticles; NUMERICAL SIMULATIONS; GAS-TRANSPORT; CLUSTERS;
D O I
10.1680/jemmr.16.00094
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The structure of silica aerogel is a unique three-dimensional nanoporous consisting of silica nanoparticles. It has a potential for using in high temperature range due to the non-combustion of the skeleton and the excellent insulation performance. However, the structure of silica aerogel will collapse under high temperature resulting in the decrease of its performance. This paper introduces a parameter s for describing the structural change in silica aerogel aggregates with increase in temperature. The authors propose a new formula based on the scaling theory for calculating s. The gel was formatted by off-lattice diffusion-limited cluster-cluster aggregation of identical spherical particles in a cubic box. The Monte Carlo method was used to determine the formula factors. The authors calculated the temperature dependence of the particle diameter, concentration and specific pore surface area of the silica aggregates of 500 primary spherical particles in the temperature range of 300-900 K. The simulation results are in good agreement with the experimental results.
引用
收藏
页码:47 / 54
页数:8
相关论文
共 50 条
  • [31] Gelatin content governs hydration induced structural changes in silica-gelatin hybrid aerogels - Implications in drug delivery
    Keri, Monika
    Forgacs, Attila
    Papp, Vanda
    Banyai, Istvan
    Veres, Peter
    Len, Adel
    Dudas, Zoltan
    Fabian, Istvan
    Kalmar, Jozsef
    ACTA BIOMATERIALIA, 2020, 105 : 131 - 145
  • [32] STRUCTURAL AND ACIDIC PROPERTIES OF AEROGELS OF NIOBIA, NIOBIA SILICA, AND NIOBIA TITANIA
    MAURER, SM
    NG, D
    KO, EI
    CATALYSIS TODAY, 1993, 16 (3-4) : 319 - 331
  • [33] Synthesis, structural and chemical properties of iron oxide-silica aerogels
    Fabrizioli, P
    Bürgi, T
    Burgener, M
    van Doorslaer, S
    Baiker, A
    JOURNAL OF MATERIALS CHEMISTRY, 2002, 12 (03) : 619 - 630
  • [34] Prediction of structure changes of organic-silica aerogels during pyrolysis
    Gordienko, Mariia
    Belous, Dmitriy
    Tyrtyshnikov, Andrey
    Mitrofanov, Igor
    Menshutina, Natalia
    Lebedev, Evgeniy
    27TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PT A, 2017, 40A : 181 - 186
  • [35] Hydrophobic silica aerogels
    J Non Cryst Solids, (23):
  • [36] Organofunctional silica aerogels
    Husing, N
    Schubert, U
    JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 1997, 8 (1-3) : 807 - 812
  • [37] Nanopores in silica aerogels
    Sausa, O.
    Iskrova, M.
    Majernik, V.
    Kristiak, J.
    Jesenak, K.
    Vargova, M.
    ACTA PHYSICA POLONICA A, 2008, 113 (05) : 1517 - 1522
  • [38] Organofunctional silica aerogels
    N. Hüsing
    U. Schubert
    Journal of Sol-Gel Science and Technology, 1997, 8 : 807 - 812
  • [39] HYDROPHOBIC SILICA AEROGELS
    YOKOGAWA, H
    YOKOYAMA, M
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1995, 186 : 23 - 29
  • [40] Organofunctional Silica Aerogels
    N. Hüsing
    U. Schubert
    Journal of Sol-Gel Science and Technology, 1997, 8 : 807 - 812