ZnO/InxSy/Cu(In,Ga)Se2 solar cells fabricated by coherent heterojunction formation

被引:52
|
作者
Strohm, A
Eisenmann, L
Gebhardt, RK
Harding, A
Schlötzer, T
Abou-Ras, D
Schock, HW
机构
[1] Univ Stuttgart, IPE, D-70569 Stuttgart, Germany
[2] ETH, Grp Dunnschichtphys, Festkorperphys Lab, CH-8093 Zurich, Switzerland
[3] ETH, Inst Angew Phys, CH-8093 Zurich, Switzerland
关键词
chalcopyrite; Cu(In; Ga)Se-2; alternative buffer layers; In2S3; InxSy; indium sulphide; interface; photovoltaics; physical vapour deposition;
D O I
10.1016/j.tsf.2004.11.032
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper reports on physical vapour deposition (PVD) of indium sulphide buffer layers in polycrystalline ZnO-window/buffer/Cu(In,Ga)Se-2-absorber thin film solar cells. The coevaporation of In and S and the compound-evaporation of In2S3-powder are compared. The production of highly efficient solar cells is only possible under well-defined indium-sulphide growth conditions resulting in high structural order at the buffer/absorber interface and in good process homogeneity and reproducibility. In the present work, these conditions could only be guaranteed for the compound-evaporation technique. Post-annealing of the whole cells in air or vacuum affects mainly the window/buffer interface and leads to a significant increase of open-circuit voltage, fill factor, and efficiency of the compound-evaporated cells. The highest efficiency obtained so far is 14.8% without antireflective coating, a value comparable to our CdS-buffer-based solar cells. This way, physical vapour deposition of indium sulphide has demonstrated its potential for being integrated in coherent in-line fabrication of Cu(In,Ga)Se-2-based solar cells. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:162 / 167
页数:6
相关论文
共 50 条
  • [21] Compensating donors in Cu(In,Ga)Se2 absorbers of solar cells
    Igalson, M
    Edoff, M
    THIN SOLID FILMS, 2005, 480 : 322 - 326
  • [22] Fabrication and characterisation of Cu(In,Ga)Se2 solar cells on polyimide
    Zachmann, H.
    Puttnins, S.
    Yakushev, M. V.
    Luckert, F.
    Martin, R. W.
    Karotki, A. V.
    Gremenok, V. F.
    Mudryi, A. V.
    THIN SOLID FILMS, 2011, 519 (21) : 7264 - 7267
  • [23] Breakdown characteristics of flexible Cu(In,Ga)Se2 solar cells
    Puttnins, S.
    Jander, S.
    Wehrmann, A.
    Benndorf, G.
    Stoelzel, M.
    Mueller, A.
    von Wenckstern, H.
    Daume, F.
    Rahm, A.
    Grundmann, M.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 120 : 506 - 511
  • [24] Verification of phototransistor model for Cu(In,Ga)Se2 solar cells
    Ott, Thomas
    Schoenberger, Francillina
    Walter, Thomas
    Hariskos, Dimitrios
    Kiowski, Oliver
    Salomon, Oliver
    Schaeffler, Raymund
    THIN SOLID FILMS, 2015, 582 : 392 - 396
  • [25] Stability of Cu(In,Ga)Se2 solar cells:: a thermodynamic approach
    Guillemoles, JF
    THIN SOLID FILMS, 2000, 361 : 338 - 345
  • [26] The puzzle of Cu(In,Ga)Se2 (CIGS) solar cells stability
    Guillemoles, JF
    THIN SOLID FILMS, 2002, 403 : 405 - 409
  • [27] Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells
    Romeo, A
    Terheggen, A
    Abou-Ras, D
    Bätzner, DL
    Haug, FJ
    Kälin, M
    Rudmann, D
    Tiwari, AN
    PROGRESS IN PHOTOVOLTAICS, 2004, 12 (2-3): : 93 - 111
  • [28] Formation mechanisms of Cu(In,Ga)Se2 solar cells prepared from electrodeposited precursors
    Oliva, F.
    Broussillou, C.
    Annibaliano, M.
    Frederich, N.
    Grand, P. P.
    Roussy, A.
    Collot, P.
    Bodnar, S.
    THIN SOLID FILMS, 2013, 535 : 127 - 132
  • [29] Limitation of Current Transport across the Heterojunction in Cu(In,Ga)Se2 Solar Cells Prepared with Alkali Fluoride Postdeposition Treatment
    Villanueva-Tovar, Alejandra
    Kodalle, Tim
    Kaufmann, Christian A.
    Schlatmann, Rutger
    Klenk, Reiner
    SOLAR RRL, 2020, 4 (04)
  • [30] Locally grown Cu(In,Ga)Se2 micro islands for concentrator solar cells
    Schmid, M.
    Heidmann, B.
    Ringleb, F.
    Eylers, K.
    Ernst, O.
    Andree, S.
    Bonse, J.
    Boeck, T.
    Krueger, J.
    PHYSICS, SIMULATION, AND PHOTONIC ENGINEERING OF PHOTOVOLTAIC DEVICES VII, 2018, 10527