On the relaxation of a class of functionals defined on Riemannian distances

被引:0
作者
Davini, A [1 ]
机构
[1] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
关键词
Riemannian and Finsler metrics; relaxation; Gamma convergence;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the relaxation of a class of functionals defined on distances induced by isotropic Riemannian metrics on an open subset of R-N. We prove that isotropic Riemannian metrics are dense in Finsler ones and we show that the relaxed functionals admit a specific integral representation.
引用
收藏
页码:113 / 130
页数:18
相关论文
共 50 条
  • [41] Integral functionals and the gap problem: Sharp bounds for relaxation and energy concentration
    Mingione, G
    Mucci, D
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 36 (05) : 1540 - 1579
  • [42] Lower semicontinuity and relaxation results in BV for integral functionals with BV integrands
    Amar, Micol
    De Cicco, Virginia
    Fusco, Nicola
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2008, 14 (03) : 456 - 477
  • [43] On the Gamma Convergence of Functionals Defined Over Pairs of Measures and Energy-Measures
    Caroccia, Marco
    Cristoferi, Riccardo
    JOURNAL OF NONLINEAR SCIENCE, 2020, 30 (04) : 1723 - 1769
  • [44] Relaxation and Integral Representation for Functionals of Linear Growth on Metric Measure spaces
    Hakkarainen, Heikki
    Kinnunen, Juha
    Lahti, Panu
    Lehtela, Pekka
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2016, 4 (01): : 288 - 313
  • [45] Relaxation of functionals with linear growth: Interactions of emerging measures and free discontinuities
    Kromer, Stefan
    Kruzik, Martin
    Zappale, Elvira
    ADVANCES IN CALCULUS OF VARIATIONS, 2023, 16 (04) : 835 - 865
  • [46] A Relaxation Result in the Vectorial Setting and Power Law Approximation for Supremal Functionals
    Francesca Prinari
    Elvira Zappale
    Journal of Optimization Theory and Applications, 2020, 186 : 412 - 452
  • [47] Γ-convergence for a class of action functionals induced by gradients of convex functions
    Ambrosio, Luigi
    Baradat, Aymeric
    Brenier, Yann
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2021, 32 (01) : 97 - 108
  • [48] Relaxation of a quadratic functional defined by a nonnegative unbounded matrix
    Casado-Díaz, J
    POTENTIAL ANALYSIS, 1999, 11 (01) : 39 - 76
  • [49] Relaxation of a Quadratic Functional Defined by a Nonnegative Unbounded Matrix
    Juan Casado-díaz
    Potential Analysis, 1999, 11 : 39 - 76
  • [50] VARIATIONAL APPROXIMATION OF FUNCTIONALS DEFINED ON 1-DIMENSIONAL CONNECTED SETS: THE PLANAR CASE
    Bonafini, Mauro
    Orlandi, Giandomenico
    Oudet, Edouard
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (06) : 6307 - 6332