共 50 条
On the relaxation of a class of functionals defined on Riemannian distances
被引:0
|作者:
Davini, A
[1
]
机构:
[1] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
关键词:
Riemannian and Finsler metrics;
relaxation;
Gamma convergence;
D O I:
暂无
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper we study the relaxation of a class of functionals defined on distances induced by isotropic Riemannian metrics on an open subset of R-N. We prove that isotropic Riemannian metrics are dense in Finsler ones and we show that the relaxed functionals admit a specific integral representation.
引用
收藏
页码:113 / 130
页数:18
相关论文