On the relaxation of a class of functionals defined on Riemannian distances

被引:0
|
作者
Davini, A [1 ]
机构
[1] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
关键词
Riemannian and Finsler metrics; relaxation; Gamma convergence;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the relaxation of a class of functionals defined on distances induced by isotropic Riemannian metrics on an open subset of R-N. We prove that isotropic Riemannian metrics are dense in Finsler ones and we show that the relaxed functionals admit a specific integral representation.
引用
收藏
页码:113 / 130
页数:18
相关论文
共 50 条