Graphene oxide membranes with high permeability and selectivity for dehumidification of air

被引:55
作者
Shin, Yongsoon [1 ]
Liu, Wei [2 ]
Schwenzer, Birgit [1 ]
Manandhar, Sandeep [3 ,4 ]
Chase-Woods, Dylan [2 ,5 ]
Engelhard, Mark H. [3 ]
Devanathan, Ram [2 ]
Fifield, Leonard S. [2 ]
Bennett, Wendy D. [2 ]
Ginovska, Bojana [1 ]
Gotthold, David W. [2 ]
机构
[1] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA
[2] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA
[3] Pacific NW Natl Lab, WR Wiley Environm Mol Sci Lab, Richland, WA 99352 USA
[4] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA
[5] Univ Washington, Dept Phys, Seattle, WA 98195 USA
关键词
POLY(BUTYLENE TEREPHTHALATE); BLOCK-COPOLYMERS; GAS SEPARATION; WATER-VAPOR; ENERGY; PERMEATION; BEHAVIOR; SYSTEM; SHEETS;
D O I
10.1016/j.carbon.2016.05.023
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hierarchically stacked 2D graphene oxide (GO) membranes are a fascinating and promising new class of materials with the potential for radically improved water vapor/gas separation with excellent selectivity and high permeability. This paper details dehumidification results from flowing gas mixtures through free-standing GO membrane samples prepared by a casting method. The first demonstrated use of freestanding GO membranes for water vapor separation reveals outstanding water vapor permeability and H2O/N-2 selectivity. Free-standing GO membranes exhibit extremely high water vapor permeability of 1.82 x 10(5) Barrer and a water vapor permeance of 1.01 x 10(-5) mol/m(2)sPa, while the nitrogen permeability was below the system's detection limit, yielding a selectivity >10(4) in 80% relative humidity (RH) air at 30.8 degrees C. The results show great potential for a range of energy conversion and environmental applications. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:164 / 170
页数:7
相关论文
共 31 条
  • [1] [Anonymous], 2010, DEFOA0000239 US DOE
  • [2] Future directions of membrane gas separation technology
    Baker, RW
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2002, 41 (06) : 1393 - 1411
  • [3] Barrie J.A., 1968, DIFFUSION POLYM
  • [4] Water confined in nanotubes and between graphene sheets: A first principle study
    Cicero, Giancarlo
    Grossman, Jeffrey C.
    Schwegler, Eric
    Gygi, Francois
    Galli, Giulia
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (06) : 1871 - 1878
  • [5] Water Desalination across Nanoporous Graphene
    Cohen-Tanugi, David
    Grossman, Jeffrey C.
    [J]. NANO LETTERS, 2012, 12 (07) : 3602 - 3608
  • [6] Super-stretchable Graphene Oxide Macroscopic Fibers with Outstanding Knotability Fabricated by Dry Film Scrolling
    Cruz-Silva, Rodolfo
    Morelos-Gomez, Aaron
    Kim, Hyung-ick
    Jang, Hong-kyu
    Tristan, Ferdinando
    Vega-Diaz, Sofia
    Rajukumar, Lakshmy P.
    Elias, Ana Laura
    Perea-Lopez, Nestor
    Suhr, Jonghwan
    Endo, Morinobu
    Terrones, Mauricio
    [J]. ACS NANO, 2014, 8 (06) : 5959 - 5967
  • [7] The chemistry of graphene oxide
    Dreyer, Daniel R.
    Park, Sungjin
    Bielawski, Christopher W.
    Ruoff, Rodney S.
    [J]. CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) : 228 - 240
  • [8] Investigating the influence of surfactants on the stabilization of aqueous reduced graphene oxide dispersions and the characteristics of their composite films
    Fernandez-Merino, M. J.
    Paredes, J. I.
    Villar-Rodil, S.
    Guardia, L.
    Solis-Fernandez, P.
    Salinas-Torres, D.
    Cazorla-Amoros, D.
    Morallon, E.
    Martinez-Alonso, A.
    Tascon, J. M. D.
    [J]. CARBON, 2012, 50 (09) : 3184 - 3194
  • [9] A water vapor-permeable membrane from block copolymers of poly(butylene terephthalate) and polyethylene oxide
    Gebben, B
    [J]. JOURNAL OF MEMBRANE SCIENCE, 1996, 113 (02) : 323 - 329
  • [10] Harriman LG, 2002, ASHRAE J, V44, P22