The experimental determination of hydromagnesite precipitation rates at 22.5-75°C

被引:22
作者
Berninger, U-N. [1 ,2 ]
Jordan, G. [2 ]
Schott, J. [1 ]
Oelkers, E. H. [1 ,3 ]
机构
[1] CNRS UPS OMP, Geosci Environm Toulouse, F-31400 Toulouse, France
[2] LMU, Dept Geo & Umweltwissensch, D-80333 Munich, Germany
[3] UCL, Dept Earth Sci, London WC1E 6BT, England
关键词
hydromagnesite; carbon storage; carbonate minerals; precipitation; CARBFIX PILOT PROJECT; CARBON-DIOXIDE; FORSTERITE DISSOLUTION; MINERAL CARBONATION; CO2; SEQUESTRATION; THERMODYNAMIC PROPERTIES; CALCITE PRECIPITATION; KINETICS; TEMPERATURE; PH;
D O I
10.1180/minmag.2014.078.6.07
中图分类号
P57 [矿物学];
学科分类号
070901 ;
摘要
Natural hydromagnesite (Mg-5(CO3)(4)(OH)(2)center dot 4H(2)O) dissolution and precipitation experiments were performed in closed-system reactors as a function of temperature from 22.5 to 75 degrees C and at 8.6 < pH < 10.7. The equilibrium constants for the reaction Mg-5(CO3)(4)(OH)(2)center dot 4H(2)O + 6H(+) - 5Mg(2+) + 4HCO(3)(-) + 6H(2)O were determined by bracketing the final fluid compositions obtained from the dissolution and precipitation experiments. The resulting constants were found to be 10 (33.7 +/- 0.9), 10(30.5 +/- 0.5) and 10(26.5 +/- 0.5) at 22.5, 50 and 75 degrees C, respectively. Whereas dissolution rates were too fast to be determined from the experiments, precipitation rates were slower and quantified. The resulting BET surface area-normalized hydromagnesite precipitation rates increase by a factor of similar to 2 with pH decreasing from 10.7 to 8.6. Measured rates are approximately two orders of magnitude faster than corresponding forsterite dissolution rates, suggesting that the overall rates of the low-temperature carbonation of olivine are controlled by the relatively sluggish dissolution of the magnesium silicate mineral.
引用
收藏
页码:1405 / 1416
页数:12
相关论文
共 52 条
[1]   CO2 sequestration in basaltic rock at the Hellisheidi site in SW Iceland:: stratigraphy and chemical composition of the rocks at the injection site [J].
Alfredsson, H. A. ;
Hardarson, B. S. ;
Franzson, H. ;
Gislason, S. R. .
MINERALOGICAL MAGAZINE, 2008, 72 (01) :1-5
[2]   Experimental Study of Carbon Sequestration Reactions Controlled by the Percolation of CO2-Rich Brine through Peridotites [J].
Andreani, M. ;
Luquot, L. ;
Gouze, P. ;
Godard, M. ;
Hoise, E. ;
Gibert, B. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (04) :1226-1231
[3]   Multidimensional reactive transport modeling of CO2 mineral sequestration in basalts at the Hellisheidi geothermal field, Iceland [J].
Aradottir, E. S. P. ;
Sonnenthal, E. L. ;
Bjornsson, G. ;
Jonsson, H. .
INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2012, 9 :24-40
[4]   Carbon sequestration via aqueous olivine mineral carbonation:: Role of passivating layer formation [J].
Bearat, Hamdallah ;
McKelvy, Michael J. ;
Chizmeshya, Andrew V. G. ;
Gormley, Deirdre ;
Nunez, Ryan ;
Carpenter, R. W. ;
Squires, Kyle ;
Wolf, George H. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (15) :4802-4808
[5]   Hydrolysis of magnesium(II) at elevated temperatures [J].
Brown, PL ;
Drummond, SE ;
Palmer, DA .
JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS, 1996, (14) :3071-3075
[6]   Adsorption of gases in multimolecular layers [J].
Brunauer, S ;
Emmett, PH ;
Teller, E .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1938, 60 :309-319
[7]  
BURTON EA, 1987, GEOLOGY, V15, P111, DOI 10.1130/0091-7613(1987)15<111:RPROAA>2.0.CO
[8]  
2
[9]   Influence of amorphous silica layer formation on the dissolution rate of olivine at 90 °C and elevated pCO2 [J].
Daval, Damien ;
Sissmann, Olivier ;
Menguy, Nicolas ;
Saldi, Giuseppe D. ;
Guyot, Francois ;
Martinez, Isabelle ;
Corvisier, Jerome ;
Garcia, Bruno ;
Machouk, Imene ;
Knauss, Kevin G. ;
Hellmann, Roland .
CHEMICAL GEOLOGY, 2011, 284 (1-2) :193-209
[10]   Do organic ligands affect forsterite dissolution rates? [J].
Declercq, Julien ;
Bosc, Olivier ;
Oelkers, Eric H. .
APPLIED GEOCHEMISTRY, 2013, 39 :69-77