Rupture behavior of the 2017 MW6.6 Poso earthquake in Sulawesi, Indonesia

被引:3
作者
Sianipar, Dimas [1 ,2 ]
Daniarsyad, Gatut [1 ]
Priyobudi, P. [1 ]
Heryandoko, Nova [1 ]
Daryono, D. [1 ]
机构
[1] Badan Meteorol Klimatol & Geofis BMKG, Jakarta 10610, Indonesia
[2] Sekolah Tinggi Meteorol Klimatol & Geofis STMKG, Tangerang Selatan 15221, Indonesia
关键词
Finite-fault; Rupture process; Earthquake source; Seismogram;
D O I
10.1016/j.geog.2021.07.002
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
On May 29, 2017, the M(W)6.6 Poso earthquake occurred in Central Sulawesi, Indonesia, causing moderate damages. The mainshock rupture and primary aftershock cluster occurred in the active Palolo-Sausu tectonic zone, and some aftershocks also took place around the Tokararu fault. However, the rupture mechanism of this earthquake and its relation to regional tectonics are not clear. In this study, the rupture process of the Poso mainshock is estimated by finite-fault waveform inversion, which is constrained by teleseismic bodies and surface waves. The rupture propagates upward unilaterally in a southwest-dipping moderate-angle (similar to 34 degrees) normal fault beneath Tokorondo Mountains, with a notable similar to 15% initial moment release at the first 4s of the similar to 12s rupture duration. The average and peak slip are 0.5 m and 1.5 m, respectively. The rupture velocity is relatively slow (less than 2.5 km/s), and the Coulomb stress changes due to the mainshock are obtained using the inverted coseismic slip. (C) 2021 Editorial office of Geodesy and Geodynamics. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
引用
收藏
页码:329 / 335
页数:7
相关论文
共 22 条
[1]  
Bassin C., 2000, EOS T AM GEOPHYS UN, V81, pF897, DOI DOI 10.1007/S00015-005-1168-3
[2]  
Dahlen F. A., 1998, Theoretical Global Seismology
[3]  
Daryono M.R., 2016, Institut Teknologi Bandung
[4]   PRELIMINARY REFERENCE EARTH MODEL [J].
DZIEWONSKI, AM ;
ANDERSON, DL .
PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 1981, 25 (04) :297-356
[5]   The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes [J].
Ekstroem, G. ;
Nettles, M. ;
Dziewonski, A. M. .
PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2012, 200 :1-9
[6]   ISC-EHB 1964-2016, an Improved Data Set for Studies of Earth Structure and Global Seismicity [J].
Engdahl, E. R. ;
Di Giacomo, D. ;
Sakarya, B. ;
Gkarlaouni, C. G. ;
Harris, J. ;
Storchak, D. A. .
EARTH AND SPACE SCIENCE, 2020, 7 (01)
[7]  
Helmberger D. V., 1983, Proceedings of the International School of Physics `Enrico Fermi'. Course LXXXV. Earthquakes: Observation, Theory and Interpretation, P174
[8]   Recipe for Predicting Strong Ground Motion from Crustal Earthquake Scenarios [J].
Irikura, Kojiro ;
Miyake, Hiroe .
PURE AND APPLIED GEOPHYSICS, 2011, 168 (1-2) :85-104
[9]   Development of the 2017 national seismic hazard maps of Indonesia [J].
Irsyam, Masyhur ;
Cummins, Phil R. ;
Asrurifak, M. ;
Faizal, Lutfi ;
Natawidjaja, Danny Hilman ;
Widiyantoro, Sri ;
Meilano, Irwan ;
Triyoso, Wahyu ;
Rudiyanto, Ariska ;
Hidayati, Sri ;
Ridwan, M. ;
Hanifa, Nuraini Rahma ;
Syahbana, Arifan Jaya .
EARTHQUAKE SPECTRA, 2020, 36 (1_SUPPL) :112-136
[10]   Source description of the 1999 Hector Mine, California, earthquake, part I: Wavelet domain inversion theory and resolution analysis [J].
Ji, C ;
Wald, DJ ;
Helmberger, DV .
BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2002, 92 (04) :1192-1207