Larvicidal potential of ethanolic extracts of dried fruits of three species of peppercorns against different instars of an indian strain of dengue fever mosquito, Aedes aegypti L. (Diptera: Culicidae)

被引:34
作者
Kumar, Sarita [1 ]
Warikoo, Radhika [1 ]
Wahab, Naim [1 ]
机构
[1] Univ Delhi, Acharya Narendra Dev Coll, Dept Zool, New Delhi 110019, India
关键词
PIPER-NIGRUM; PLANT-EXTRACTS; ESSENTIAL OILS; LEAF EXTRACTS; LONG PEPPER; LARVAE; BOTANICALS; RESISTANCE; REPELLENT; ANOPHELES;
D O I
10.1007/s00436-010-1948-1
中图分类号
R38 [医学寄生虫学]; Q [生物科学];
学科分类号
07 ; 0710 ; 09 ; 100103 ;
摘要
Larvicidal bioassay was carried out in the laboratory to assess the potential of ethanolic extracts of dried fruits of three species of peppercorns: Long pepper, Piper longum L., Black pepper, Piper nigrum, and White pepper, Piper nigrum against the different instars of field-collected Indian strain of dengue fever mosquito (Aedes aegypti L.). The investigations established the larvicidal potential of all the varieties of pepper fruits against Ae. aegypti. Against early fourth instar, the ethanolic extracts of Black and White P. nigrum proved to be 30-40% less toxic than the extracts of P. longum, whereas against third instars, white pepper extracts exhibited 7% more efficacy than that of black pepper and 47% more toxicity than that of long pepper. The results also revealed that the extracts of all the three pepper species were 11-25 times more toxic against the third instar larvae as compared to the early fourth instars. The lethal concentration, 50% (LC50) values obtained with ethanolic extracts of P. longum, White P. nigrum and Black P. nigrum against early fourth instar larvae were 0.248, 0.356, and 0.405 ppm, respectively, and the lethal concentration, 90% (LC90) values were 0.605, 0.758, and 0.801 ppm, respectively. Whereas against third instar larvae, the LC50 values recorded with three extracts were 0.022, 0.015, and 0.016 ppm and the LC90 values recorded were 0.054, 0.034, and 0.046 ppm, respectively. The larvae treated with all the pepper species showed initial abnormal behavior in their motion followed by excitation, convulsions, and paralysis, leading to 100% kill indicating delayed larval toxicity and effects of the extracts on the neuromuscular system. Observations of morphological alterations on treated larvae under light microscopy revealed that most organs, except anal papillae, had a normal structural appearance as that of controls. The structural deformation in the form of shrinkage in the internal membrane exhibited by anal papillae suggests the anal papillae as the probable action sites of the pepper extracts. The potential of peppercorns as new types of larvicides for the control of mosquitoes are explored.
引用
收藏
页码:901 / 907
页数:7
相关论文
共 47 条
[1]   A method of computing the effectiveness of an insecticide [J].
Abbott, WS .
JOURNAL OF ECONOMIC ENTOMOLOGY, 1925, 18 :265-267
[2]   Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae) [J].
Amer, Abdelkrim ;
Mehlhorn, Heinz .
PARASITOLOGY RESEARCH, 2006, 99 (04) :466-472
[3]   Persistency of larvicidal effects of plant oil extracts under different storage conditions [J].
Amer, Abdelkrim ;
Mehlhorn, Heinz .
PARASITOLOGY RESEARCH, 2006, 99 (04) :473-477
[4]  
[Anonymous], 1992, World Health Organ Tech Rep Ser, V818, P1
[5]  
Assabgui R, 1997, ACS SYM SER, V658, P38
[6]  
AWAD OM, 2003, WHO E MEDITERR HLTH, V9, P637
[7]  
Bowers William S., 1995, Insect Science and its Application, V16, P339
[8]   Insecticide resistance and vector control [J].
Brogdon, WG ;
McAllister, JC .
EMERGING INFECTIOUS DISEASES, 1998, 4 (04) :605-613
[9]  
Chaithong U, 2006, J VECTOR ECOL, V31, P138, DOI 10.3376/1081-1710(2006)31[138:LEOPPO]2.0.CO
[10]  
2