Machine learning application to single channel design of molten salt reactor

被引:6
作者
Turkmen, Mehmet [1 ]
Chee, Gwendolyn J. Y. [1 ]
Huff, Kathryn D. [1 ]
机构
[1] Univ Illinois, Dept Nucl Plasma & Radiol Engn, MC-234 104 South Wright St, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
Channel design; Molten salt reactor; Machine learning; Optimization; Simulation; Monte Carlo; NONDOMINATED SORTING APPROACH; GENETIC ALGORITHMS; OPTIMIZATION; NEUTRONICS; SIMULATION;
D O I
10.1016/j.anucene.2021.108409
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
This study proposes a robust approach to quickly design a nuclear reactor core and explores the best performing machine learning (ML) technique for predicting feature parameters of the core. We implemented the approach into a hypothetical channel of molten salt reactors to demonstrate the applicability of the method. We prepared a Python tool, named Plankton, which couples to a reactor physics code and an optimization tool, and imports ML methods. The tool performs three consecutive phases: reactor database generation, machine learning application, and design optimization. We identified the extra trees method as the best performing estimator. With the estimator, we found nine optimum designs in total, one for each fuel-salt pair, and estimated all the performance metrics of the designs with a <5% prediction error compared to their actual values. U-Pu-NaCl fuel-salt gave promising results with the highest conversion ratio, the most negative feedback coefficient, and the lowest fast flux. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 27 条
[1]  
Anderson K., 2019, 4 ANN TECHN WORKSH F
[2]  
[Anonymous], 2018, T KOR NUCL SOC SPRIN
[3]   Whole core analysis of the single-fluid double-zone thorium molten salt reactor (SD-TMSR) [J].
Ashraf, O. ;
Rykhlevskii, Andrei ;
Tikhomirov, G. V. ;
Huff, Kathryn D. .
ANNALS OF NUCLEAR ENERGY, 2020, 137
[4]   Deep learning approach to nuclear fuel transmutation in a fuel cycle simulator [J].
Bae, Jin Whan ;
Rykhlevskii, Andrei ;
Chee, Gwendolyn ;
Huff, Kathryn D. .
ANNALS OF NUCLEAR ENERGY, 2020, 139
[5]   Molten salt reactor neutronics and fuel cycle modeling and simulation with SCALE [J].
Betzler, Benjamin R. ;
Powers, Jeffrey J. ;
Worrall, Andrew .
ANNALS OF NUCLEAR ENERGY, 2017, 101 :489-503
[6]   Pymoo: Multi-Objective Optimization in Python']Python [J].
Blank, Julian ;
Deb, Kalyanmoy .
IEEE ACCESS, 2020, 8 :89497-89509
[7]   ENDF/B-VII.0: Next generation evaluated nuclear data library for nuclear science and technology [J].
Chadwick, M. B. ;
Oblozinsky, P. ;
Herman, M. ;
Greene, N. M. ;
McKnight, R. D. ;
Smith, D. L. ;
Young, P. G. ;
MacFarlane, R. E. ;
Hale, G. M. ;
Frankle, S. C. ;
Kahler, A. C. ;
Kawano, T. ;
Little, R. C. ;
Madland, D. G. ;
Moller, P. ;
Mosteller, R. D. ;
Page, P. R. ;
Talou, P. ;
Trellue, H. ;
White, M. C. ;
Wilson, W. B. ;
Arcilla, R. ;
Dunford, C. L. ;
Mughabghab, S. F. ;
Pritychenko, B. ;
Rochman, D. ;
Sonzogni, A. A. ;
Lubitz, C. R. ;
Trumbull, T. H. ;
Weinman, J. P. ;
Brown, D. A. ;
Cullen, D. E. ;
Heinrichs, D. P. ;
McNabb, D. P. ;
Derrien, H. ;
Dunn, M. E. ;
Larson, N. M. ;
Leal, L. C. ;
Carlson, A. D. ;
Block, R. C. ;
Briggs, J. B. ;
Cheng, E. T. ;
Huria, H. C. ;
Zerkle, M. L. ;
Kozier, K. S. ;
Courcelle, A. ;
Pronyaev, V. ;
van der Marck, S. C. .
NUCLEAR DATA SHEETS, 2006, 107 (12) :2931-3059
[8]  
Chollet F., 2015, Keras
[9]   An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints [J].
Deb, Kalyanmoy ;
Jain, Himanshu .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2014, 18 (04) :577-601
[10]   Status of research and development of learning-based approaches in nuclear science and engineering: A review [J].
Gomez-Fernandez, Mario ;
Higley, Kathryn ;
Tokuhiro, Akira ;
Welter, Kent ;
Wong, Weng-Keen ;
Yang, Haori .
NUCLEAR ENGINEERING AND DESIGN, 2020, 359