Grobner-Shirshov bases for Lie Ω-algebras and free Rota-Baxter Lie algebras

被引:6
作者
Qiu, Jianjun [1 ]
Chen, Yuqun [1 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
关键词
Grobner-Shirshov basis; Lyndon-Shirshov word; Lie Omega-algebra; Rota-Baxter Lie algebra; Nijenhuis Lie algebra; ASSOCIATIVE ALGEBRAS; DENDRIFORM ALGEBRAS; DIAMOND LEMMA; OPERATORS; RING;
D O I
10.1142/S0219498817501900
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We generalize the Lyndon-Shirshov words to the Lyndon-Shirshov Omega-words on a set X and prove that the set of all the nonassociative Lyndon-Shirshov Omega-words forms a linear basis of the free Lie Omega-algebra on the set X. From this, we establish Grobner-Shirshov bases theory for Lie Omega-algebras. As applications, we give Grobner-Shirshov bases of a free lambda-Rota-Baxter Lie algebra, of a free modified lambda-Rota-Baxter Lie algebra, and of a free Nijenhuis Lie algebra and, then linear bases of these three algebras are obtained.
引用
收藏
页数:21
相关论文
共 64 条
  • [1] Abdaoui K., 2015, ARXIV151208043
  • [2] Aguiar M, 2006, ELECTRON J COMB, V13
  • [3] From Rota-Baxter algebras to pre-Lie algebras
    An, Huihui
    Bai, Chengming
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (01)
  • [4] [Anonymous], 1993, DIRAC STRUCTURES INT
  • [5] [Anonymous], 1970, Aequat. Math., DOI DOI 10.1007/BF01844169
  • [6] [Anonymous], 1998, London Math. Soc. Lecture Note Ser.
  • [7] [Anonymous], 1994, GRADUATE STUDIES MAT
  • [8] Nonabelian Generalized Lax Pairs, the Classical Yang-Baxter Equation and PostLie Algebras
    Bai, Chengming
    Guo, Li
    Ni, Xiang
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 297 (02) : 553 - 596
  • [9] Baxter G., 1960, Pacific J. Math., V10, P731, DOI 10.2140/pjm.1960.10.731
  • [10] DIAMOND LEMMA FOR RING THEORY
    BERGMAN, GM
    [J]. ADVANCES IN MATHEMATICS, 1978, 29 (02) : 178 - 218