Competing orders and cascade of degeneracy lifting in doped Bernal bilayer graphene

被引:30
作者
Szabo, Andras L. [1 ]
Roy, Bitan [2 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
[2] Lehigh Univ, Dept Phys, Bldg 16, Bethlehem, PA 18015 USA
关键词
BERRYS PHASE;
D O I
10.1103/PhysRevB.105.L201107
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Motivated by recent experiments [H. Zhou et al., Science 375, 774 (2022) and S. C. de la Barrera et al., arXiv:2110.13907], here we propose a general mechanism for valley and/or spin degeneracy lifting of the electronic bands in doped Bernal bilayer graphene, subject to electric displacement (D) fields. A D-field induced layer polarization (LP), when accompanied by a Hubbard repulsion-driven layer antiferromagnet (LAF) and next-nearest-neighbor repulsion-driven quantum anomalous Hall (QAH) orders, lifts the fourfold degeneracy of electronic bands, yielding a quarter metal for small doping, as also observed in ABC trilayer graphene. With the disappearance of the QAH order, electronic bands recover twofold valley degeneracy, thereby forming a conventional or compensated (with majority and minority carriers) half metal at moderate doping, depending on the relative strength of LP and LAF. At even higher doping and for a weak D field only LAF survives and the Fermi surface recovers fourfold degeneracy. We also show that a pure repulsive electronic interaction mediated triplet f -wave pairing emerges from a parent correlated nematic liquid or compensated half metal when an in-plane magnetic field is applied to the system.
引用
收藏
页数:5
相关论文
共 39 条
[1]   Twisted bilayer graphene. I. Matrix elements, approximations, perturbation theory, and a k . p two-band model [J].
Bernevig, B. Andrei ;
Song, Zhi-Da ;
Regnault, Nicolas ;
Lian, Biao .
PHYSICAL REVIEW B, 2021, 103 (20)
[2]   Moire bands in twisted double-layer graphene [J].
Bistritzer, Rafi ;
MacDonald, Allan H. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (30) :12233-12237
[3]   Unconventional superconductivity in magic-angle graphene superlattices [J].
Cao, Yuan ;
Fatemi, Valla ;
Fang, Shiang ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Kaxiras, Efthimios ;
Jarillo-Herrero, Pablo .
NATURE, 2018, 556 (7699) :43-+
[4]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[5]   Superconductivity from repulsive interactions in rhombohedral trilayer graphene: A Kohn-Luttinger-like mechanism [J].
Cea, Tommaso ;
Pantaleon, Pierre A. ;
Vo Tien Phong ;
Guinea, Francisco .
PHYSICAL REVIEW B, 2022, 105 (07)
[6]  
Chatterjee S., 2022, NAT COMMUN, DOI DOI 10.1038/S41467-022-33561-W
[7]   Acoustic-phonon-mediated superconductivity in Bernal bilayer graphene [J].
Chou, Yang-Zhi ;
Wu, Fengcheng ;
Sau, Jay D. ;
Das Sarma, Sankar .
PHYSICAL REVIEW B, 2022, 105 (10)
[8]   Acoustic-Phonon-Mediated Superconductivity in Rhombohedral Trilayer Graphene [J].
Chou, Yang-Zhi ;
Wu, Fengcheng ;
Sau, Jay D. ;
Das Sarma, Sankar .
PHYSICAL REVIEW LETTERS, 2021, 127 (18)
[9]   Electronic multicriticality in bilayer graphene [J].
Cvetkovic, Vladimir ;
Throckmorton, Robert E. ;
Vafek, Oskar .
PHYSICAL REVIEW B, 2012, 86 (07)
[10]   Non-Abelian anomalies in multi-Weyl semimetals [J].
Dantas, Renato M. A. ;
Pena-Benitez, Francisco ;
Roy, Bitan ;
Surowka, Piotr .
PHYSICAL REVIEW RESEARCH, 2020, 2 (01)