The short-time critical behaviour of the Ginzburg-Landau model with long-range interaction

被引:21
作者
Chen, Y [1 ]
Guo, SH
Li, ZB
Marculescu, S
Schülke, L
机构
[1] Zhongshan Univ, Guangzhou 510275, Peoples R China
[2] Univ Siegen, D-57068 Siegen, Germany
关键词
D O I
10.1007/s100510070060
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The renormalisation group approach is applied to the study of the short-time critical behaviour of the d-dimensional Ginzburg-Landau model with long-range interaction of the form p(sigma)s(p)s(-p) in momentum space. Firstly the system is quenched from a high temperature to the critical temperature and then relaxes to equilibrium within the model A dynamics. The asymptotic scaling laws and the initial slip exponents theta' and theta of the order parameter and the response function respectively, are calculated to the second order in epsilon = 2 sigma - d.
引用
收藏
页码:289 / 296
页数:8
相关论文
共 30 条
[1]   RENORMALIZED FIELD-THEORY OF CRITICAL DYNAMICS [J].
BAUSCH, R ;
JANSSEN, HK ;
WAGNER, H .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1976, 24 (01) :113-127
[2]   Short-time behavior of the kinetic spherical model with long-ranged interactions [J].
Chen, Y ;
Guo, SH ;
Li, ZB ;
Ye, AJ .
EUROPEAN PHYSICAL JOURNAL B, 2000, 15 (01) :97-104
[3]   FINITE SIZE EFFECTS IN CRITICAL-DYNAMICS AND THE RENORMALIZATION-GROUP [J].
DIEHL, HW .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1987, 66 (02) :211-218
[4]  
Dominicis CD., 1976, J PHYS-PARIS, V37, P247, DOI 10.1051/jphyscol:1976138
[5]   CRITICAL EXPONENTS FOR LONG-RANGE INTERACTIONS [J].
FISHER, ME ;
NICKEL, BG ;
MA, S .
PHYSICAL REVIEW LETTERS, 1972, 29 (04) :917-&
[6]   THE STORY OF COULOMBIC CRITICALITY [J].
FISHER, ME .
JOURNAL OF STATISTICAL PHYSICS, 1994, 75 (1-2) :1-36
[7]   CRITICAL-DYNAMICS IN LIQUIDS WITH LONG-RANGE FORCES [J].
FOLK, R ;
MOSER, G .
PHYSICAL REVIEW E, 1994, 49 (04) :3128-3132
[8]   CALCULATION OF DYNAMIC CRITICAL PROPERTIES USING WILSONS EXPANSION METHODS [J].
HALPERIN, BI ;
MA, SK ;
HOHENBERG, PC .
PHYSICAL REVIEW LETTERS, 1972, 29 (23) :1548-+
[9]   THEORY OF DYNAMIC CRITICAL PHENOMENA [J].
HOHENBERG, PC ;
HALPERIN, BI .
REVIEWS OF MODERN PHYSICS, 1977, 49 (03) :435-479
[10]   CRITICAL-BEHAVIOR OF THE LONG-RANGE (PHI-2)2 MODEL IN THE SHORT-RANGE LIMIT [J].
HONKONEN, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (05) :825-831