ERROR ESTIMATES FOR THE NUMERICAL APPROXIMATION OF A DISTRIBUTED OPTIMAL CONTROL PROBLEM GOVERNED BY THE VON KARMAN EQUATIONS

被引:7
作者
Mallik, Gouranga [1 ]
Nataraj, Neela [1 ]
Raymond, Jean-Pierre [2 ]
机构
[1] Indian Inst Technol, Dept Math, Bombay 400076, Maharashtra, India
[2] Univ Paul Sabatier Toulouse III, Inst Math Toulouse, UMR CNRS 5219, F-31062 Toulouse 9, France
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2018年 / 52卷 / 03期
关键词
von Karman equations; distributed control; plate bending; semilinear; conforming finite element methods; error estimates; FINITE-ELEMENT APPROXIMATION; NAVIER-STOKES EQUATIONS; THIN ELASTIC PLATE; INTERIOR PENALTY METHOD; VONKARMAN EQUATIONS;
D O I
10.1051/m2an/2018023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss the numerical approximation of a distributed optimal control problem governed by the von Karman equations, defined in polygonal domains with point-wise control constraints. Conforming finite elements are employed to discretize the state and adjoint variables. The control is discretized using piece-wise constant approximations. A priori error estimates are derived for the state, adjoint and control variables. Numerical results that justify the theoretical results are presented.
引用
收藏
页码:1137 / 1172
页数:36
相关论文
共 30 条