A microfluidic microbial fuel cell fabricated by soft lithography

被引:86
作者
Qian, Fang [1 ,2 ]
He, Zhen [3 ]
Thelen, Michael P. [2 ]
Li, Yat [1 ]
机构
[1] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA
[2] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94551 USA
[3] Univ Wisconsin, Dept Civil Engn & Mech, Milwaukee, WI 53211 USA
关键词
Microliter-scale; Shewanella oneidensis MR-1; Polydimethylsiloxane; Power density; ELECTRICITY-GENERATION; ELECTRON-TRANSFER; POWER-DENSITY; SHEWANELLA; CHAMBER; MR-1; IMPROVEMENT;
D O I
10.1016/j.biortech.2011.02.095
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Here we report a new microfluidic microbial fuel cell (MFC) platform built by soft-lithography techniques. The MFC design includes a unique sub-5 mu L polydimethylsiloxane soft chamber featuring carbon cloth electrodes and microfluidic delivery of electrolytes. Bioelectricity was generated using Shewanella oneidensis MR-1 cultivated on either complex organic substrates or lactate-based minimal medium. These micro-MFCs exhibited fast start-ups, reproducible current generation, and enhanced power densities up to 62.5 W m(-3) that represents the best result for sub-100 mu L MFCs. Systematic comparisons of custom-made MFC reactors having different chamber sizes indicate volumetric power density is inversely correlated with chamber size in our systems: i.e., the smaller the chamber, the higher the power density is achieved. Published by Elsevier Ltd.
引用
收藏
页码:5836 / 5840
页数:5
相关论文
共 32 条
[1]  
Bozzola J.J, 1999, ELECT MICROSCOPY PRI, V2nd ed.
[2]   A New Method for Water Desalination Using Microbial Desalination Cells [J].
Cao, Xiaoxin ;
Huang, Xia ;
Liang, Peng ;
Xiao, Kang ;
Zhou, Yingjun ;
Zhang, Xiaoyuan ;
Logan, Bruce E. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (18) :7148-7152
[3]   Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors [J].
Chang, IS ;
Moon, H ;
Jang, JK ;
Kim, BH .
BIOSENSORS & BIOELECTRONICS, 2005, 20 (09) :1856-1859
[4]  
Cheng S, 2007, P NATL ACAD SCI USA, V104, P18871, DOI 10.1073/pnas.0706379104
[5]   Micromachined microbial and photosynthetic fuel cells [J].
Chiao, Mu ;
Lam, Kien B. ;
Lin, Liwei .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2006, 16 (12) :2547-2553
[6]   Mediating electron transfer from bacteria to a gold electrode via a self-assembled monolayer [J].
Crittenden, Scott R. ;
Sund, Christian J. ;
Sumner, James J. .
LANGMUIR, 2006, 22 (23) :9473-9476
[7]   Analysis and Improvement of a Scaled-Up and Stacked Microbial Fuel Cell [J].
Dekker, Arjan ;
Ter Heijne, Annemiek ;
Saakes, Michel ;
Hamelers, Hubertus V. M. ;
Buisman, Cees J. N. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (23) :9038-9042
[8]   Quantification of the Internal Resistance Distribution of Microbial Fuel Cells [J].
Fan, Yanzhen ;
Sharbrough, Evan ;
Liu, Hong .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (21) :8101-8107
[9]   Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration [J].
Fan, Yanzhen ;
Hu, Hongqiang ;
Liu, Hong .
JOURNAL OF POWER SOURCES, 2007, 171 (02) :348-354
[10]   Novel strategy for three-dimensional real-time imaging of microbial fuel cell communities: monitoring the inhibitory effects of proton accumulation within the anode biofilm [J].
Franks, Ashley E. ;
Nevin, Kelly P. ;
Jia, Hongfei ;
Izallalen, Mounir ;
Woodard, Trevor L. ;
Lovley, Derek R. .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (01) :113-119