Solar Spots Classification Using Pre-processing and Deep Learning Image Techniques

被引:0
作者
Camargo, Thiago O. [1 ]
Premebida, Sthefanie Monica [1 ]
Pechebovicz, Denise [1 ]
Soares, Vinicios R. [1 ]
Martins, Marcella [1 ]
Baroncini, Virginia [1 ]
Siqueira, Hugo [1 ]
Oliva, Diego [2 ]
机构
[1] Fed Univ Technol Parana Ponta Grossa UTFPR PG, Ponta Grossa, Parana, Brazil
[2] Univ Guadalajara, CUCEI, Guadalajara, Jalisco, Mexico
来源
APPLICATIONS OF COMPUTATIONAL INTELLIGENCE, COLCACI 2019 | 2019年 / 1096卷
关键词
Image processing; Astronomy and Astrophysics; Neural network;
D O I
10.1007/978-3-030-36211-9_19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Machine learning techniques and image processing have been successfully applied in many research fields. Astronomy and Astrophysics are some of these areas. In this work, we apply machine learning techniques in a new approach to classify and characterize solar spots which appear on the solar photosphere which express intense magnetic fields, and these magnetic fields present significant effects on Earth. In our experiments we consider images from Helioseismic and Magnetic Imager (HMI) in IntensitygramFlat format. We apply pre-processing techniques to recognize and count the groups of sunspots for further classification. Besides, we investigate the performance of the CNN AlexNet layer input in comparison with the Radial Basis Function Network (RBF) using different levels and combining both networks approaches. The results show that when the CNN uses the RBF to identify and classify sunspots from image processing, its performance is higher than when only CNN is used.
引用
收藏
页码:235 / 246
页数:12
相关论文
共 16 条
  • [1] [Anonymous], 2006, IEEE T NEURAL NETWOR
  • [2] From the Wolf number to the International Sunspot Index: 25 years of SIDC
    Clette, Frederic
    Berghmans, David
    Vanlommel, Petra
    Van der Linden, Ronald A. M.
    Koeckelenbergh, Andre
    Wauters, Laurence
    [J]. ADVANCES IN SPACE RESEARCH, 2007, 40 (07) : 919 - 928
  • [3] Damiao G., 2014, ESTUDO ATIVIDADE SOL
  • [4] Echer Ezequiel, 2003, Rev. Bras. Ensino Fís., V25, P157
  • [5] The relations between eruptions and sunspots
    Giovanelli, RG
    [J]. ASTROPHYSICAL JOURNAL, 1939, 89 (05) : 555 - 567
  • [6] Han J, 2012, MOR KAUF D, P1
  • [7] Hathaway D.H., 1994, NASA TECHNICAL REPOR
  • [8] The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: Overview and Performance
    Hoeksema, J. Todd
    Liu, Yang
    Hayashi, Keiji
    Sun, Xudong
    Schou, Jesper
    Couvidat, Sebastien
    Norton, Aimee
    Bobra, Monica
    Centeno, Rebecca
    Leka, K. D.
    Barnes, Graham
    Turmon, Michael
    [J]. SOLAR PHYSICS, 2014, 289 (09) : 3483 - 3530
  • [9] Howard RA, 1960, DYNAMIC PROGRAMMING
  • [10] ImageNet Classification with Deep Convolutional Neural Networks
    Krizhevsky, Alex
    Sutskever, Ilya
    Hinton, Geoffrey E.
    [J]. COMMUNICATIONS OF THE ACM, 2017, 60 (06) : 84 - 90