Exponential and polynomial decay for a quasilinear viscoelastic equation

被引:116
作者
Messaoudi, Salim A. [1 ]
Tatar, Nasser-Eddine [1 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Math Sci, Dhahran 31261, Saudi Arabia
关键词
exponential decay; memory term; modified energy functional; nonlinear viscoelastic equation; polynomial decay; relaxation function;
D O I
10.1016/j.na.2006.11.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the following nonlinear viscoclastic equation: vertical bar u(1)vertical bar(rho) u(11) - Delta(u) - Delta u(11) + integral(t)(0) g(t - s)Delta u(s)ds = 0, in a bounded domain Omega for rho > 0. We show that the dissipation induced by the integral term is strong enough to stabilize the solution. This result improves an earlier one given by Cavalcanti et al. in [M.M. Cavalcaliti, V.N.D. Cavalcanti, J. Ferreira, Existence and uniform decay for nonlinear viscoelastic equation with strong damping, Math. Methods Appl. Sci. 24 (2001) 1043-1053]. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:785 / 793
页数:9
相关论文
共 15 条
[1]   Asymptotic stability and energy decay rates for solutions of the wave equation with memory in a star-shaped domain [J].
Aassila, M ;
Cavalcanti, MM ;
Soriano, JA .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (05) :1581-1602
[2]  
BERRIMI S, 2004, ELECT J DIFFERENTIAL, P1
[3]  
CAVALCANTI M. M., 2001, Differential and Integral Equations, V14, P85
[4]   Frictional versus viscoelastic damping in a semilinear wave equation [J].
Cavalcanti, MM ;
Oquendo, HP .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (04) :1310-1324
[5]   Existence and uniform decay for a non-linear viscoelastic equation with strong damping [J].
Cavalcanti, MM ;
Cavalcanti, VND ;
Ferreira, J .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2001, 24 (14) :1043-1053
[6]  
CAVALCANTI MM, 2002, ELECT J DIFFERENTIAL, P1
[7]  
Ferreira J., 1992, Internat. J. Math. Math. Sci., V15, P543
[8]  
Ferreira J., 1999, P 9 INT C DIFF EQ, P155
[9]   EXISTENCE OF A SOLUTION OF THE WAVE-EQUATION WITH NONLINEAR DAMPING AND SOURCE TERMS [J].
GEORGIEV, V ;
TODOROVA, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 109 (02) :295-308
[10]  
Lagnese J., 1989, International Series of Numerical Mathematics, V91