Hydrodynamic shocks in microroller suspensions

被引:20
作者
Delmotte, Blaise [1 ]
Driscoll, Michelle [2 ]
Chaikin, Paul [2 ]
Donev, Aleksandar [1 ]
机构
[1] NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
[2] NYU, Dept Phys, 4 Washington Pl, New York, NY 10003 USA
基金
美国国家科学基金会;
关键词
POPULATIONS; MOTION; FLOW;
D O I
10.1103/PhysRevFluids.2.092301
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We combine experiments, large-scale simulations, and continuum models to study the emergence of coherent structures in a suspension of magnetically driven microrollers sedimented near a floor. Collective hydrodynamic effects are predominant in this system, leading to strong density-velocity coupling. We characterize a uniform suspension and show that density waves propagate freely in all directions in a dispersive fashion. When sharp density gradients are introduced in the suspension, we observe the formation of a shock. Unlike Burgers' shocklike structures observed in other active and driven confined hydrodynamic systems, the shock front in our system has a well-defined finite width and moves rapidly compared to the mean suspension velocity. We introduce a continuum model demonstrating that the finite width of the front is due to far-field nonlocal hydrodynamic interactions and governed by a geometric parameter, the average particle height above the floor.
引用
收藏
页数:9
相关论文
共 28 条
[1]   The physics of 2D microfluidic droplet ensembles [J].
Beatus, Tsevi ;
Bar-Ziv, Roy H. ;
Tlusty, Tsvi .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2012, 516 (03) :103-145
[2]   Burgers Shock Waves and Sound in a 2D Microfluidic Droplets Ensemble [J].
Beatus, Tsevi ;
Tlusty, Tsvi ;
Bar-Ziv, Roy .
PHYSICAL REVIEW LETTERS, 2009, 103 (11)
[3]   FUNDAMENTAL SINGULARITIES OF VISCOUS-FLOW .1. IMAGE SYSTEMS IN VICINITY OF A STATIONARY NO-SLIP BOUNDARY [J].
BLAKE, JR ;
CHWANG, AT .
JOURNAL OF ENGINEERING MATHEMATICS, 1974, 8 (01) :23-29
[4]   Emergent vortices in populations of colloidal rollers [J].
Bricard, Antoine ;
Caussin, Jean-Baptiste ;
Das, Debasish ;
Savoie, Charles ;
Chikkadi, Vijayakumar ;
Shitara, Kyohei ;
Chepizhko, Oleksandr ;
Peruani, Fernando ;
Saintillan, David ;
Bartolo, Denis .
NATURE COMMUNICATIONS, 2015, 6
[5]   Emergence of macroscopic directed motion in populations of motile colloids [J].
Bricard, Antoine ;
Caussin, Jean-Baptiste ;
Desreumaux, Nicolas ;
Dauchot, Olivier ;
Bartolo, Denis .
NATURE, 2013, 503 (7474) :95-98
[6]   Hydrodynamics of Confined Active Fluids [J].
Brotto, Tommaso ;
Caussin, Jean-Baptiste ;
Lauga, Eric ;
Bartolo, Denis .
PHYSICAL REVIEW LETTERS, 2013, 110 (03)
[7]   Emergent Spatial Structures in Flocking Models: A Dynamical System Insight [J].
Caussin, Jean-Baptiste ;
Solon, Alexandre ;
Peshkov, Anton ;
Chate, Hugues ;
Dauxois, Thierry ;
Tailleur, Julien ;
Vitelli, Vincenzo ;
Bartolo, Denis .
PHYSICAL REVIEW LETTERS, 2014, 112 (14)
[8]   Stability and non-linear response of 1D microfluidic-particle streams [J].
Champagne, Nicolas ;
Lauga, Eric ;
Bartolo, Denis .
SOFT MATTER, 2011, 7 (23) :11082-11085
[9]   Anomalous hydrodynamic interaction in a quasi-two-dimensional suspension [J].
Cui, BX ;
Diamant, H ;
Lin, BH ;
Rice, SA .
PHYSICAL REVIEW LETTERS, 2004, 92 (25) :258301-1
[10]   Hydrodynamic Fluctuations in Confined Particle-Laden Fluids [J].
Desreumaux, Nicolas ;
Caussin, Jean-Baptiste ;
Jeanneret, Raphael ;
Lauga, Eric ;
Bartolo, Denis .
PHYSICAL REVIEW LETTERS, 2013, 111 (11)