Zeroth-order continuous vector frozen waves for light scattering: exact multiple expansion in the generalized Lorenz-Mie theory

被引:18
作者
Ambrosio, Leonardo Andre [1 ]
Rached, Michel Zamboni [2 ]
Gouesbet, Gerard [3 ,4 ]
机构
[1] Univ Sao Paulo, Dept Elect & Comp Engn, Sao Carlos Sch Engn, 400 Trabalhador Sao Carlense Ave, BR-13566590 Sao Carlos, SP, Brazil
[2] Univ Estadual Campinas, Dept Commun, Sch Elect & Comp Engn, 400 Albert Einstein Ave,Cidade Univ, BR-13083852 Campinas, SP, Brazil
[3] Normandie Univ, CORIA UMR 6614, CNRS Univ, Campus Univ Madrillet, F-76800 St Etienne Du Rouvray, France
[4] INSA Rouen, Campus Univ Madrillet, F-76800 St Etienne Du Rouvray, France
基金
巴西圣保罗研究基金会;
关键词
ATTENUATION RESISTANT BEAMS; ARBITRARY-ORDER; BESSEL BEAMS; SHAPE;
D O I
10.1364/JOSAB.36.000081
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper we theoretically investigate the exact beam shape coefficients (BSCs) of a specific and promising class of nondiffracting light waves for optical trapping and micro-manipulation known as continuous vector frozen waves (CVFWs). CVFWs are constructed from vector Bessel beams in terms of a continuous superposition (integral) over the longitudinal waventunber, the final longitudinal intensity pattern being determined through the specification of a given spectrum S(k(z)). The incorporation of such highly confined and micro-structured fields into the theoretical framework of the generalized Lorenz-Mie theory (GLMT) is a first step toward the integration of such beams with optical tweezers systems as potential laser beams for the multiple manipulation of micro-particles and nano-partides along their optical axis and in multiple transverse planes. Linear, azimuthal, and radial polarizations are considered, the BSCs being calculated using three distinct approaches. The results extend and complete previous works on discrete frozen waves for light scattering problems with the aid of the GLMT. (C) 2018 Optical Society of America
引用
收藏
页码:81 / 89
页数:9
相关论文
共 28 条
[1]   Discrete vector frozen waves in generalized Lorenz-Mie theory: linear, azimuthal, and radial polarizations [J].
Ambrosio, Leonardo Andre ;
Rached, Michel Zamboni ;
Gouesbet, Gerard .
APPLIED OPTICS, 2018, 57 (12) :3293-3300
[2]   Circularly symmetric frozen waves: Vector approach for light scattering calculations [J].
Ambrosio, Leonardo Andre .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2018, 204 :112-119
[3]   Time-average forces over Rayleigh particles by superposition of equal-frequency arbitrary-order Bessel beams [J].
Ambrosio, Leonardo Andre ;
Ferreira, Mariana de Matos .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2015, 32 (05) :B67-B74
[4]   Analytical approach of ordinary frozen waves for optical trapping and micromanipulation [J].
Ambrosio, Leonardo Andre ;
Zamboni-Rached, Michel .
APPLIED OPTICS, 2015, 54 (10) :2584-2593
[5]  
[Anonymous], 1962, Treatise on the Theory of Bessel Function
[6]  
Arfken G., 1985, MATH METHODS PHYSICI, P577
[7]   Electromagnetic frozen waves with radial, azimuthal, linear, circular, and elliptical polarizations [J].
Corato-Zanarella, Mateus ;
Zamboni-Rached, Michel .
PHYSICAL REVIEW A, 2016, 94 (05)
[8]   Comment on 'Analytical results for a Bessel function times Legendre polynomials class integrals' [J].
Cregg, P. J. ;
Svedlindh, P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (46) :14029-14031
[9]   Generating attenuation-resistant frozen waves in absorbing fluid [J].
Dorrah, Ahmed H. ;
Zamboni-Rached, Michel ;
Mojahedi, Mo .
OPTICS LETTERS, 2016, 41 (16) :3702-3705
[10]   Exact analytic solutions of Maxwell's equations describing propagating nonparaxial electromagnetic beams [J].
Garay-Avendano, Roger L. ;
Zamboni-Rached, Michel .
APPLIED OPTICS, 2014, 53 (20) :4524-4531