Continuous wavelet transform on the hyperboloid

被引:17
作者
Bogdanova, Iva [1 ]
Vandergheynst, Pierre
Gazeau, Jean-Pierre
机构
[1] Ecole Polytech Fed Lausanne, Signal Proc Inst, CH-1015 Lausanne, Switzerland
[2] Univ Paris 07, Lab Astroparticle & Cosmol, F-75251 Paris, France
关键词
non-commutative harmonic analysis; wavelets; Fourier-Helgason transform;
D O I
10.1016/j.acha.2007.01.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we build a continuous wavelet transform (CWT) on the upper sheet of the 2-hyperboloid H-+(2). First, we define a class of suitable dilations on the hyperboloid through conic projection. Then, incorporating hyperbolic motions belonging to SO0(1, 2), we define a family of axisymmetric hyperbolic wavelets. The continuous wavelet transform W-f(a, x) is obtained by convolution of the scaled axisymmetric wavelets with the signal. The wavelet transform is proved to be invertible whenever wavelets satisfy a particular admissibility condition, which turns out to be a zero-mean condition. We then provide some basic examples and discuss the limit at null curvature. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:285 / 306
页数:22
相关论文
共 50 条
  • [11] SAR imaging using multidimensional continuous wavelet transform and applications to polarimetry and interferometry
    Colin, E
    Tria, M
    Titin-Schnaider, C
    Ovarlez, JP
    Benidir, M
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2004, 14 (05) : 206 - 212
  • [12] The Poisson Wavelet Transform
    Kosanovich, KA
    Moser, AR
    Piovoso, MJ
    CHEMICAL ENGINEERING COMMUNICATIONS, 1996, 146 : 131 - 138
  • [13] Evaluation of the continuous wavelet transform method for phase measurement in Digital Speckle Pattern Interferometry
    Federico, A
    Kaufmann, GH
    INTERFEROMETRY XI: TECHNIQUES AND ANALYSIS, 2002, 4777 : 279 - 287
  • [14] FLUID-STRUCTURE INTERACTION AND HOMOGENIZATION: FROM SPATIAL AVERAGING TO CONTINUOUS WAVELET TRANSFORM
    Mokhtari, S.
    Ricciardi, G.
    Faucher, V
    Argoul, P.
    Adelaide, L.
    VIII INTERNATIONAL CONFERENCE ON COMPUTATIONAL METHODS FOR COUPLED PROBLEMS IN SCIENCE AND ENGINEERING (COUPLED PROBLEMS 2019), 2019, : 529 - 540
  • [15] SAR target feature extraction using the 2-D continuous wavelet transform
    Kaplan, LM
    Murenzi, R
    RADAR SENSOR TECHNOLOGY II, 1997, 3066 : 101 - 112
  • [16] Continuous wavelet transform of wind and wind-induced pressures on a building in suburban terrain
    Geurts, CPW
    Hajj, MR
    Tieleman, HW
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 1998, 74-6 : 609 - 617
  • [17] Fringe pattern analysis using a one-dimensional modified Morlet continuous wavelet transform
    Abid, Abdulbasit Z.
    Gdeisat, Munther A.
    Burton, David R.
    Lalor, Michael J.
    Abdul-Rahman, Hussein S.
    Lilley, Francis
    OPTICAL AND DIGITAL IMAGE PROCESSING, 2008, 7000
  • [18] Demodulation of single interferograms using a sliding 2-D continuous wavelet transform method
    Villa, Jesus
    de la Rosa, Ismael
    Ivanov, Rumen
    Alaniz, Daniel
    Gonzalez, Efren
    JOURNAL OF MODERN OPTICS, 2015, 62 (08) : 633 - 637
  • [19] CONVOLUTION FOR THE DISCRETE WAVELET TRANSFORM
    Pathak, R. S.
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2011, 9 (06) : 905 - 922
  • [20] Wavelet filtering with the Mellin transform
    Kaiser, G
    APPLIED MATHEMATICS LETTERS, 1996, 9 (05) : 69 - 74