Optimal entanglement witnesses from generalized reduction and Robertson maps

被引:24
作者
Chruscinski, Dariusz [1 ]
Pytel, Justyna [1 ]
机构
[1] Nicolaus Copernicus Univ, Inst Phys, PL-87100 Torun, Poland
关键词
D O I
10.1088/1751-8113/44/16/165304
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We provide a generalization of the reduction and Robertson positive maps in matrix algebras. They give rise to a new class of optimal entanglement witnesses. Their structural physical approximation is analyzed. As a byproduct we provide new examples of PPT (positive partial transpose) entangled states.
引用
收藏
页数:15
相关论文
共 37 条
[1]  
Arveson W., 1969, Acta Math, V123, P141, DOI 10.1007/BF02392388
[2]  
AUGUSIAK R, 2010, ARXIV10085056
[3]   Geometric picture of entanglement and Bell inequalities [J].
Bertlmann, RA ;
Narnhofer, H ;
Thirring, W .
PHYSICAL REVIEW A, 2002, 66 (03) :9
[4]  
BHATIA R., 2006, POSITIVE DEFINITE MA
[5]   Separable multipartite mixed states: Operational asymptotically necessary and sufficient conditions [J].
Brandao, FGSL ;
Vianna, RO .
PHYSICAL REVIEW LETTERS, 2004, 93 (22)
[6]   Quantifying entanglement with witness operators [J].
Brandao, FGSL .
PHYSICAL REVIEW A, 2005, 72 (02)
[7]   Optimal entanglement criterion for mixed quantum states [J].
Breuer, Heinz-Peter .
PHYSICAL REVIEW LETTERS, 2006, 97 (08)
[8]   Characterizing entanglement [J].
Bruss, D .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (09) :4237-4251
[9]   COMPLETELY POSITIVE LINEAR MAPS ON COMPLEX MATRICES [J].
CHOI, MD .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 10 (03) :285-290
[10]   Class of positive partial transposition states [J].
Chruscinski, Dariusz ;
Kossakowski, Andrzej .
PHYSICAL REVIEW A, 2006, 74 (02)