Cratering and spall simulation of Pokhran-1 event with three-dimensional transient finite element analysis

被引:0
|
作者
Ranjan, R [1 ]
Singh, RK [1 ]
Sikka, SK [1 ]
Kakodkar, A [1 ]
机构
[1] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India
来源
CURRENT SCIENCE | 2005年 / 88卷 / 07期
关键词
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Three-dimensional transient numerical simulation of coupled gas cavity and geological medium problem resulting from underground nuclear explosion events is complex due to the gas cavity growth, resulting into the large deformations and large strains of the geological medium and shock-induced high strain-rate dependence of the response. However, it is important to establish the effects of local inelastic and nonlinear behaviour due to crushing and cracking of the geological medium, on the shock-waves near the source and the seismic signals beyond the elastic radius, This study also helps simulate the shock-wave reflection effects from the free surface near the ground zero, mound growth, spall near the free surface and the subsequent free fall of the mound due to gravity effect resulting in crater formation. The impacting spalled rock layers give rise to secondary seismic signals in addition to the primary signals that are observed in the near field which in turn are known to influence the far-field seismic signals. The present article describes the capabilities of a three-dimensional transient finite element code, SHOCK-3D, for the short-time cavity growth, shock-wave propagation, mound growth and its free fall along with the settlement of the M-Dund observed after a longer duration for the composite layer medium. The code predictions are bench-marked for the near-source experimental observations of the first Indian nuclear explosion event of 1974, carried out at the Pokhran best site.
引用
收藏
页码:1133 / 1141
页数:9
相关论文
共 50 条
  • [11] Automatic remeshing for three-dimensional finite element simulation of welding
    Lindgren, LE
    Haggblad, HA
    McDill, JMJ
    Oddy, AS
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 147 (3-4) : 401 - 409
  • [12] Simplified three-dimensional finite element simulation of tube spinning
    Ebihara, O
    Mori, K
    Akaishi, K
    SIMULATION OF MATERIALS PROCESSING: THEORY, METHODS AND APPLICATIONS, 2001, : 927 - 932
  • [13] Finite element simulation of three-dimensional shape memory devices
    Terriault, P
    Trochu, F
    SHAPE MEMORY ALLOYS: FUNDAMENTALS, MODELING AND INDUSTRIAL APPLICATIONS, 1999, : 111 - 126
  • [14] Three-dimensional finite element simulation of a polycrystalline copper specimen
    Musienko, A.
    Tatschl, A.
    Schmidegg, K.
    Kolednik, O.
    Pippan, R.
    Cailletaud, G.
    ACTA MATERIALIA, 2007, 55 (12) : 4121 - 4136
  • [15] Three-dimensional finite element simulation of curing of polymer composites
    Cheung, A
    Yu, Y
    Pochiraju, K
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2004, 40 (08) : 895 - 912
  • [16] Three-dimensional finite-element simulation of bulge forming
    Ahmed, M
    Hashmi, MSJ
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2001, 119 (1-3) : 387 - 392
  • [17] Three-Dimensional Finite Element Analysis of Steel Silo
    Chen, Changbing
    Liang, Xingpei
    Bi, Shouyi
    FRONTIERS OF GREEN BUILDING, MATERIALS AND CIVIL ENGINEERING, PTS 1-8, 2011, 71-78 : 4031 - +
  • [18] On the three-dimensional finite element analysis of dovetail attachments
    Beisheim, JR
    Sinclair, GB
    JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 2003, 125 (02): : 372 - 379
  • [19] Finite element analysis of three-dimensional RTM process
    Deb, MK
    Reddy, MP
    Mayavaram, RS
    Baumann, CE
    CONFERENCE PROCEEDINGS AT ANTEC '98: PLASTICS ON MY MIND, VOLS I-3: VOL I; PROCESSING, VOL II; SPECIAL AREAS, VOL III; MATERIALS, 1998, 44 : 2322 - 2326
  • [20] Three-dimensional finite-element analysis of maxillary
    Yu, Hyung S.
    Baik, Hyoung S.
    Sung, Sang J.
    Kim, Kee D.
    Cho, Young S.
    EUROPEAN JOURNAL OF ORTHODONTICS, 2007, 29 (02) : 118 - 125