Single microwave-photon detector using an artificial Λ-type three-level system

被引:166
作者
Inomata, Kunihiro [1 ]
Lin, Zhirong [1 ]
Koshino, Kazuki [2 ]
Oliver, William D. [3 ,4 ]
Tsai, Jaw-Shen [1 ,5 ]
Yamamoto, Tsuyoshi [6 ]
Nakamura, Yasunobu [1 ,7 ]
机构
[1] RIKEN, CEMS, Wako, Saitama 3510198, Japan
[2] Tokyo Med & Dent Univ, Coll Liberal Arts & Sci, Ichikawa, Chiba 2720827, Japan
[3] MIT, Lincoln Lab, Lexington, MA 02420 USA
[4] MIT, Dept Phys, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[5] Tokyo Univ Sci, Dept Phys, Shinjuku Ku, Tokyo 1628601, Japan
[6] NEC IoT Device Res Labs, Tsukuba, Ibaraki 3058501, Japan
[7] Univ Tokyo, RCAST, Meguro Ku, Tokyo 1538904, Japan
关键词
QUANTUM COMPUTATION; OSCILLATOR; ATOM;
D O I
10.1038/ncomms12303
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single-photon detection is a requisite technique in quantum-optics experiments in both the optical and the microwave domains. However, the energy of microwave quanta are four to five orders of magnitude less than their optical counterpart, making the efficient detection of single microwave photons extremely challenging. Here we demonstrate the detection of a single microwave photon propagating through a waveguide. The detector is implemented with an impedance-matched artificial Lambda system comprising the dressed states of a driven superconducting qubit coupled to a microwave resonator. Each signal photon deterministically induces a Raman transition in the Lambda system and excites the qubit. The subsequent dispersive readout of the qubit produces a discrete 'click'. We attain a high single-photon-detection efficiency of 0.66 +/- 0.06 with a low dark-count probability of 0.014 +/- 0.001 and a reset time of similar to 400 ns. This detector can be exploited for various applications in quantum sensing, quantum communication and quantum information processing.
引用
收藏
页数:7
相关论文
共 33 条
[1]   A linear-optical proof that the permanent is #P-hard [J].
Aaronson, Scott .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 467 (2136) :3393-3405
[2]   Resonance Fluorescence of a Single Artificial Atom [J].
Astafiev, O. ;
Zagoskin, A. M. ;
Abdumalikov, A. A., Jr. ;
Pashkin, Yu. A. ;
Yamamoto, T. ;
Inomata, K. ;
Nakamura, Y. ;
Tsai, J. S. .
SCIENCE, 2010, 327 (5967) :840-843
[3]   Analog information processing at the quantum limit with a Josephson ring modulator [J].
Bergeal, N. ;
Vijay, R. ;
Manucharyan, V. E. ;
Siddiqi, I. ;
Schoelkopf, R. J. ;
Girvin, S. M. ;
Devoret, M. H. .
NATURE PHYSICS, 2010, 6 (04) :296-302
[4]   A single-photon transistor using nanoscale surface plasmons [J].
Chang, Darrick E. ;
Sorensen, Anders S. ;
Demler, Eugene A. ;
Lukin, Mikhail D. .
NATURE PHYSICS, 2007, 3 (11) :807-812
[5]   Microwave Photon Counter Based on Josephson Junctions [J].
Chen, Y. -F. ;
Hover, D. ;
Sendelbach, S. ;
Maurer, L. ;
Merkel, S. T. ;
Pritchett, E. J. ;
Wilhelm, F. K. ;
McDermott, R. .
PHYSICAL REVIEW LETTERS, 2011, 107 (21)
[6]   Scalable photonic quantum computation through cavity-assisted interactions [J].
Duan, LM ;
Kimble, HJ .
PHYSICAL REVIEW LETTERS, 2004, 92 (12) :127902-1
[7]   Invited Review Article: Single-photon sources and detectors [J].
Eisaman, M. D. ;
Fan, J. ;
Migdall, A. ;
Polyakov, S. V. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2011, 82 (07)
[8]   Quantum cryptography [J].
Gisin, N ;
Ribordy, GG ;
Tittel, W ;
Zbinden, H .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :145-195
[9]   Single-photon detectors for optical quantum information applications [J].
Hadfield, Robert H. .
NATURE PHOTONICS, 2009, 3 (12) :696-705
[10]   Demonstration of a Single-Photon Router in the Microwave Regime [J].
Hoi, Io-Chun ;
Wilson, C. M. ;
Johansson, Goran ;
Palomaki, Tauno ;
Peropadre, Borja ;
Delsing, Per .
PHYSICAL REVIEW LETTERS, 2011, 107 (07)