Dark-current-free petawatt laser-driven wakefield accelerator based on electron self-injection into an expanding plasma bubble

被引:38
作者
Kalmykov, S. Y. [1 ]
Yi, S. A. [1 ]
Beck, A. [2 ]
Lifschitz, A. F. [3 ]
Davoine, X. [2 ]
Lefebvre, E. [2 ]
Khudik, V. [1 ]
Shvets, G. [1 ]
Downer, M. C. [1 ]
机构
[1] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
[2] CEA, DAM, DIF, F-91297 Bruyeres Le Chatel, Arpajon, France
[3] Univ Paris 11, CNRS, Phys Gaz & Plasmas Lab, F-91405 Orsay, France
基金
美国国家科学基金会;
关键词
TI-SAPPHIRE LASER; CAPILLARY DISCHARGES; BEAMS; INTENSE; PULSES; REGIME;
D O I
10.1088/0741-3335/53/1/014006
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A dark-current-free plasma accelerator driven by a short (<= 150 fs) self-guided petawatt laser pulse is proposed. The accelerator uses two plasma layers, one of which, short and dense, acts as a thin nonlinear lens. It is followed by a long rarefied plasma (similar to 10(17) electrons cm(-3)) in which background electrons are trapped and accelerated by a nonlinear laser wakefield. The pulse overfocused by the plasma lens diffracts in low-density plasma as in vacuum and drives in its wake a rapidly expanding electron density bubble. The expanding bubble effectively traps initially quiescent electrons. The trapped charge given by quasi-cylindrical three-dimensional particle-in-cell (PIC) simulations (using the CALDER-Circ code) is similar to 1.3 nC. When laser diffraction saturates and self-guiding begins, the bubble transforms into a bucket of a weakly nonlinear non-broken plasma wave. Self-injection thus never resumes, and the structure remains free of dark current. The CALDER-Circ modelling predicts a few pi mm mrad normalized transverse emittance of electron beam accelerated in the first wake bucket. Test-particle modelling of electron acceleration over 9 cm (using the quasistatic PIC code WAKE) sets the upper limit of energy gain 2.6 GeV with similar to 2% relative spread.
引用
收藏
页数:16
相关论文
共 59 条
[1]   Filamentation of ultrashort laser pulses propagating in tenuous plasmas [J].
Andreev, N. E. ;
Gorbunov, L. M. ;
Mora, P. ;
Ramazashvili, R. R. .
PHYSICS OF PLASMAS, 2007, 14 (08)
[2]   0.85-PW, 33-fs Ti:sapphire laser [J].
Aoyama, M ;
Yamakawa, K ;
Akahane, Y ;
Ma, J ;
Inoue, N ;
Ueda, H ;
Kiriyama, H .
OPTICS LETTERS, 2003, 28 (17) :1594-1596
[3]   Capillary discharges for guiding of laser pulses [J].
Bobrova, NA ;
Bulanov, SV ;
Esaulov, AA ;
Sasorov, PV .
PLASMA PHYSICS REPORTS, 2000, 26 (01) :10-20
[4]   Controlled electron injection into the wake wave using plasma density inhomogeneity [J].
Brantov, A. V. ;
Esirkepov, T. Zh. ;
Kando, M. ;
Kotaki, H. ;
Bychenkov, V. Yu. ;
Bulanov, S. V. .
PHYSICS OF PLASMAS, 2008, 15 (07)
[5]  
Chiu C, 2000, PHYS REV SPEC TOP-AC, V3, DOI 10.1103/PhysRevSTAB.3.071301
[6]   Holographic visualization of laser wakefields [J].
Dong, P. ;
Reed, S. A. ;
Yi, S. A. ;
Kalmykov, S. ;
Li, Z. Y. ;
Shvets, G. ;
Matlis, N. H. ;
McGuffey, C. ;
Bulanov, S. S. ;
Chvykov, V. ;
Kalintchenko, G. ;
Krushelnick, K. ;
Maksimchuk, A. ;
Matsuoka, T. ;
Thomas, A. G. R. ;
Yanovsky, V. ;
Downer, M. C. .
NEW JOURNAL OF PHYSICS, 2010, 12
[7]   Formation of Optical Bullets in Laser-Driven Plasma Bubble Accelerators [J].
Dong, Peng ;
Reed, S. A. ;
Yi, S. A. ;
Kalmykov, S. ;
Shvets, G. ;
Downer, M. C. ;
Matlis, N. H. ;
Leemans, W. P. ;
McGuffey, C. ;
Bulanov, S. S. ;
Chvykov, V. ;
Kalintchenko, G. ;
Krushelnick, K. ;
Maksimchuk, A. ;
Matsuoka, T. ;
Thomas, A. G. R. ;
Yanovsky, V. .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[8]   Observation of laser-pulse shortening in nonlinear plasma waves [J].
Faure, J ;
Glinec, Y ;
Santos, JJ ;
Ewald, F ;
Rousseau, JP ;
Kiselev, S ;
Pukhov, A ;
Hosokai, T ;
Malka, V .
PHYSICAL REVIEW LETTERS, 2005, 95 (20)
[9]   A laser-plasma accelerator producing monoenergetic electron beams [J].
Faure, J ;
Glinec, Y ;
Pukhov, A ;
Kiselev, S ;
Gordienko, S ;
Lefebvre, E ;
Rousseau, JP ;
Burgy, F ;
Malka, V .
NATURE, 2004, 431 (7008) :541-544
[10]   Measurements of the Critical Power for Self-Injection of Electrons in a Laser Wakefield Accelerator [J].
Froula, D. H. ;
Clayton, C. E. ;
Doeppner, T. ;
Marsh, K. A. ;
Barty, C. P. J. ;
Divol, L. ;
Fonseca, R. A. ;
Glenzer, S. H. ;
Joshi, C. ;
Lu, W. ;
Martins, S. F. ;
Michel, P. ;
Mori, W. B. ;
Palastro, J. P. ;
Pollock, B. B. ;
Pak, A. ;
Ralph, J. E. ;
Ross, J. S. ;
Siders, C. W. ;
Silva, L. O. ;
Wang, T. .
PHYSICAL REVIEW LETTERS, 2009, 103 (21)