On sharply 2-transitive groups with generalized finite elements

被引:3
作者
Sozutov, A. I. [1 ]
Durakov, E. B. [1 ]
机构
[1] Siberian Fed Univ, Krasnoyarsk, Russia
基金
俄罗斯基础研究基金会;
关键词
group; infinite group with finiteness conditions; sharply 2-transitive group; Jordan's Theorem;
D O I
10.1134/S0037446617050159
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove Jordan's Theorem for infinite sharply 2-transitive groups satisfying the finiteness (a, b)-condition, with |a| center dot |b| even.
引用
收藏
页码:887 / 890
页数:4
相关论文
共 11 条
[1]  
Durakov EB, 2013, J SIB FED UNIV-MATH, V6, P28
[2]   Sharply 2-Transitive Linear Groups [J].
Glasner, Yair ;
Gulko, Dennis D. .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (10) :2691-2701
[3]   Fixed-point-free 2-finite automorphism groups [J].
Grundhoefer, Theo ;
Jabara, Enrico .
ARCHIV DER MATHEMATIK, 2011, 97 (03) :219-223
[4]  
Mazurov V. D., 1996, TRUDY I MAT SO RAN, V30, P114
[5]  
Popov A. M., 2004, GROUPS FROBENIUS ELE
[6]  
Rips E., 2014, ARXIV14060382V4 MATH, P1
[7]   On groups with isolated involution [J].
Sozutov, A. I. ;
Durakov, E. B. .
SIBERIAN MATHEMATICAL JOURNAL, 2014, 55 (04) :706-714
[8]   On the Shunkov groups acting freely on Abelian groups [J].
Sozutov, A. I. .
SIBERIAN MATHEMATICAL JOURNAL, 2013, 54 (01) :144-151
[9]  
Sozutov A. I., 2011, INFINITE GROUPS INVO
[10]  
Tent K., 2014, ARXIV14085612V1, P1