Dynamics of the nearly parametric pendulum

被引:39
作者
Horton, B. [1 ]
Sieber, J. [1 ]
Thompson, J. M. T. [1 ]
Wiercigroch, M. [1 ]
机构
[1] Univ Aberdeen, Ctr Appl Dynam Res, Sch Engn, Univ London Kings Coll, Aberdeen AB24 3UE, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Parametric resonance; Symmetry breaking; ESCAPE ZONE; ORBITS; CHAOS; BIFURCATIONS;
D O I
10.1016/j.ijnonlinmec.2010.11.003
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Dynamically stable periodic rotations of a driven pendulum provide a unique mechanism for generating a uniform rotation from bounded excitations. This paper studies the effects of a small ellipticity of the driving, perturbing the classical parametric pendulum. The first finding is that the region in the parameter plane of amplitude and frequency of excitation where rotations are possible increases with the ellipticity. Second, the resonance tongues, which are the most characteristic feature of the classical bifurcation scenario of a parametrically driven pendulum, merge into a single region of instability. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:436 / 442
页数:7
相关论文
共 39 条
[1]  
[Anonymous], CHAOS SOLITON FRACTA
[2]   The quantum pendulum: Small and large [J].
Baker, GL ;
Blackburn, JA ;
Smith, HJT .
AMERICAN JOURNAL OF PHYSICS, 2002, 70 (05) :525-531
[3]   The use of manifold tangencies to predict orbits, bifurcations and estimate escape in driven systems [J].
Bishop, SR ;
Clifford, MJ .
CHAOS SOLITONS & FRACTALS, 1996, 7 (10) :1537-1553
[4]   Symmetry-breaking in the response of the parametrically excited pendulum model [J].
Bishop, SR ;
Sofroniou, A ;
Shi, P .
CHAOS SOLITONS & FRACTALS, 2005, 25 (02) :257-264
[5]   A comparison of commercial chaotic pendulums [J].
Blackburn, JA ;
Baker, GL .
AMERICAN JOURNAL OF PHYSICS, 1998, 66 (09) :821-830
[6]   ON A PERIODICALLY FORCED, WEAKLY DAMPED PENDULUM .3. VERTICAL FORCING [J].
BRYANT, PJ ;
MILES, JW .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1990, 32 :42-60
[7]  
Butikov E. I., 1999, European Journal of Physics, V20, P429, DOI 10.1088/0143-0807/20/6/308
[8]   PERIODIC OSCILLATIONS AND ATTRACTING BASINS FOR A PARAMETRICALLY EXCITED PENDULUM [J].
CAPECCHI, D ;
BISHOP, SR .
DYNAMICS AND STABILITY OF SYSTEMS, 1994, 9 (02) :123-143
[9]   APPROXIMATING THE ESCAPE ZONE FOR THE PARAMETRICALLY EXCITED PENDULUM [J].
CLIFFORD, MJ ;
BISHOP, SR .
JOURNAL OF SOUND AND VIBRATION, 1994, 172 (04) :572-576
[10]   Locating oscillatory orbits of the parametrically-excited pendulum [J].
Clifford, MJ ;
Bishop, SR .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1996, 37 :309-319