Effect of tool offsetting on microstructure and mechanical properties dissimilar friction stir welded Mg-Al alloys

被引:21
作者
Baghdadi, Amir Hossein [1 ]
Selamat, Nor Fazilah Mohamad [1 ]
Sajuri, Zainuddin [1 ]
机构
[1] Univ Kebangsaan Malaysia, Fac Engn & Built Environm, Dept Mech & Mat Engn, Bangi 43600, Selangor, Malaysia
来源
JOINING AND WELDING SYMPOSIUM | 2017年 / 238卷
关键词
6061-T6; ALUMINUM-ALLOY; MAGNESIUM ALLOY; AZ31B;
D O I
10.1088/1757-899X/238/1/012018
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Automotive and aerospace industries are attempting to produce lightweight structure by using materials with low density such as aluminum and magnesium alloys to increase the fuel efficiency and consequently reduce the environmental pollution. It can be beneficial to join Mg to Al to acquire ideal performance in special applications. Friction stir welding (FSW) is solid state welding processes and relatively lower temperature of the process compared to fusion welding processes. This makes FSW a potential joining technique for joining of the dissimilar materials. In this study, Mg-Al butt joints were performed by FSW under different tool offset conditions, rotation rates (500-600 rpm) and traverse speeds (20 mm/min) with tool axis offset 1 mm shifted into AZ31B or Al6061 (T6), and without offset. During the welding process AZ31B was positioned at the advancing side (AS) and Al6061 (T6) was located at the retreating side (RS). Defect free AZ31B-Al6061 (T6) dissimilar metal FSW joints with good mechanical properties were obtained with the combination of intermediate rotation rate and low traverse speed pin is in the middle. When tool positioned in -1 mm or +1 mm offsetting, some defects were found in SZ of dissimilar FSWed joints such as cavity, tunnel, and crack. Furthermore, a thin layer of intermetallic compounds was observed in the stir zone at the interface between Mg-Al plates. The strength of the joint was influenced by FSW parameters. Good mechanical properties obtained with the combination of intermediate rotational speed of 600 rpm and low travelling speed of 20 mm/min by locating Mg on advancing side when pin is in the middle. Also, Joint efficiency of the welds prepared in the present study was between 29% and 68% for the different welding parameters.
引用
收藏
页数:9
相关论文
共 20 条
[1]   Dissimilar material laser welding between magnesium alloy AZ31B and aluminum alloy A5052-O [J].
Borrisutthekul, R ;
Miyashita, Y ;
Mutoh, Y .
SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2005, 6 (02) :199-204
[2]   Microstructure and Mechanical Properties of Hybrid Laser-Friction Stir Welding between AA6061-T6 Al Alloy and AZ31 Mg Alloy [J].
Chang, Woong-Seong ;
Rajesh, S. R. ;
Chun, Chang-Keun ;
Kim, Heung-Ju .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2011, 27 (03) :199-204
[3]   Friction stir lap joining aluminum and magnesium alloys [J].
Chen, Y. C. ;
Nakata, K. .
SCRIPTA MATERIALIA, 2008, 58 (06) :433-436
[4]   Mechanical, microstructural and fracture properties of dissimilar welds produced by friction stir welding of AZ31B and Al6061 [J].
Dorbane, A. ;
Mansoor, B. ;
Ayoub, G. ;
Shunmugasamy, V. C. ;
Imad, A. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 651 :720-733
[5]   Formation of Liquid and Intermetallics in Al-to-Mg Friction Stir Welding [J].
Firouzdor, Vahid ;
Kou, Sindo .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2010, 41A (12) :3238-3251
[6]   Al-to-Mg Friction Stir Welding: Effect of Material Position, Travel Speed, and Rotation Speed [J].
Firouzdor, Vahid ;
Kou, Sindo .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2010, 41A (11) :2914-2935
[7]   Friction stir welding process of dissimilar metals of 6061-T6 aluminum alloy to AZ31B magnesium alloy [J].
Fu, Banglong ;
Qin, Guoliang ;
Li, Fei ;
Meng, Xiangmeng ;
Zhang, Jianzhong ;
Wu, Chuansong .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2015, 218 :38-47
[8]   Microstructure of friction stir welding of aluminium alloy to magnesium alloy [J].
Kostka, A. ;
Coelho, R. S. ;
dos Santos, J. ;
Pyzalla, A. R. .
SCRIPTA MATERIALIA, 2009, 60 (11) :953-956
[9]  
Kou S, 2009, TOOL WELD J, P213
[10]   Parametric studies of friction stir welding by commercial fluid dynamics simulation [J].
Long, T ;
Reynolds, AP .
SCIENCE AND TECHNOLOGY OF WELDING AND JOINING, 2006, 11 (02) :200-208