Density of Gabor Schauder bases

被引:12
作者
Deng, BQ [1 ]
Heil, C [1 ]
机构
[1] Columbus State Univ, Dept Math, Columbus, GA 31907 USA
来源
WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING VIII PTS 1 AND 2 | 2000年 / 4119卷
关键词
Beurling density; frames; Gabor systems; Schauder bases;
D O I
10.1117/12.408600
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A Gabor system is a fixed set of time-frequency shifts G(g, Lambda) = {e(2 pi ib.x)g(x - a)}((a,b)is an element of Lambda) of a function g is an element of L-2(R-d). We prove that if G(g, Lambda) forms a Schauder basis for L-2(R-d) then the upper Beurling density of Lambda satisfies D+(Lambda) less than or equal to 1. We also prove: that if G(g, Lambda) forms a Schauder basis for L-2(R-d) and if g lies in a the modulation space M-1,M-1(R-d); which is a dense subset of L-2(R-d), or if G(g, Lambda) possesses at least a lower frame bound, then Lambda has uniform Beurling density D(Lambda) = 1. We use related techniques to show that if g is an element of L-1(R-d) boolean AND L-2(R-d) then no collection {g(x - a)}(a is an element of Gamma) of pure translates of g can form a Schauder basis for L-2(R-d). We also extend these results to the case of finitely many generating functions g(1),...,g(r).
引用
收藏
页码:153 / 164
页数:12
相关论文
共 22 条
[21]   APPROXIMATION BY SHIFTS AND A THEOREM OF WIENER [J].
ZALIK, RA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 243 (SEP) :299-308
[22]   ON FUNDAMENTAL SEQUENCES OF TRANSLATES [J].
ZALIK, RA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 79 (02) :255-259