共 22 条
Density of Gabor Schauder bases
被引:12
作者:
Deng, BQ
[1
]
Heil, C
[1
]
机构:
[1] Columbus State Univ, Dept Math, Columbus, GA 31907 USA
来源:
WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING VIII PTS 1 AND 2
|
2000年
/
4119卷
关键词:
Beurling density;
frames;
Gabor systems;
Schauder bases;
D O I:
10.1117/12.408600
中图分类号:
TP301 [理论、方法];
学科分类号:
081202 ;
摘要:
A Gabor system is a fixed set of time-frequency shifts G(g, Lambda) = {e(2 pi ib.x)g(x - a)}((a,b)is an element of Lambda) of a function g is an element of L-2(R-d). We prove that if G(g, Lambda) forms a Schauder basis for L-2(R-d) then the upper Beurling density of Lambda satisfies D+(Lambda) less than or equal to 1. We also prove: that if G(g, Lambda) forms a Schauder basis for L-2(R-d) and if g lies in a the modulation space M-1,M-1(R-d); which is a dense subset of L-2(R-d), or if G(g, Lambda) possesses at least a lower frame bound, then Lambda has uniform Beurling density D(Lambda) = 1. We use related techniques to show that if g is an element of L-1(R-d) boolean AND L-2(R-d) then no collection {g(x - a)}(a is an element of Gamma) of pure translates of g can form a Schauder basis for L-2(R-d). We also extend these results to the case of finitely many generating functions g(1),...,g(r).
引用
收藏
页码:153 / 164
页数:12
相关论文