Density of Gabor Schauder bases

被引:12
作者
Deng, BQ [1 ]
Heil, C [1 ]
机构
[1] Columbus State Univ, Dept Math, Columbus, GA 31907 USA
来源
WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING VIII PTS 1 AND 2 | 2000年 / 4119卷
关键词
Beurling density; frames; Gabor systems; Schauder bases;
D O I
10.1117/12.408600
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A Gabor system is a fixed set of time-frequency shifts G(g, Lambda) = {e(2 pi ib.x)g(x - a)}((a,b)is an element of Lambda) of a function g is an element of L-2(R-d). We prove that if G(g, Lambda) forms a Schauder basis for L-2(R-d) then the upper Beurling density of Lambda satisfies D+(Lambda) less than or equal to 1. We also prove: that if G(g, Lambda) forms a Schauder basis for L-2(R-d) and if g lies in a the modulation space M-1,M-1(R-d); which is a dense subset of L-2(R-d), or if G(g, Lambda) possesses at least a lower frame bound, then Lambda has uniform Beurling density D(Lambda) = 1. We use related techniques to show that if g is an element of L-1(R-d) boolean AND L-2(R-d) then no collection {g(x - a)}(a is an element of Gamma) of pure translates of g can form a Schauder basis for L-2(R-d). We also extend these results to the case of finitely many generating functions g(1),...,g(r).
引用
收藏
页码:153 / 164
页数:12
相关论文
共 22 条
[1]  
[Anonymous], 1994, J FOURIER ANAL APPL, DOI DOI 10.1007/S00041-001-4016-5
[2]  
BABENKO KI, 1948, DOKL AKAD NAUK SSSR+, V62, P157
[3]  
CASAZZA PG, 1999, FRAMES BANACH SPACES
[4]  
Christensen O, 1999, APPL COMPUT HARMON A, V7, P292, DOI 10.1006/acha.1998.0271
[5]  
Christensen O, 1997, MATH NACHR, V185, P33
[6]   THE WAVELET TRANSFORM, TIME-FREQUENCY LOCALIZATION AND SIGNAL ANALYSIS [J].
DAUBECHIES, I .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (05) :961-1005
[7]  
Daubechies I., 1993, Ten Lectures of Wavelets, V28, P350
[8]   A CLASS OF NONHARMONIC FOURIER SERIES [J].
DUFFIN, RJ ;
SCHAEFFER, AC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 72 (MAR) :341-366
[9]  
Folland G. B., 1989, HARMONIC ANAL PHASE
[10]   DESCRIBING FUNCTIONS - ATOMIC DECOMPOSITIONS VERSUS FRAMES [J].
GROCHENIG, K .
MONATSHEFTE FUR MATHEMATIK, 1991, 112 (01) :1-41