Is the Henon attractor chaotic?

被引:21
作者
Galias, Zbigniew [1 ]
Tucker, Warwick [2 ]
机构
[1] AGH Univ Sci & Technol, Dept Elect Engn, PL-30059 Krakow, Poland
[2] Uppsala Univ, Dept Math, S-75106 Uppsala, Sweden
基金
瑞典研究理事会;
关键词
PERIODIC-ORBITS; MAP; DYNAMICS;
D O I
10.1063/1.4913945
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By performing a systematic study of the Henon map, we find low-period sinks for parameter values extremely close to the classical ones. This raises the question whether or not the well-known Henon attractor-the attractor of the Henon map existing for the classical parameter values-is a strange attractor, or simply a stable periodic orbit. Using results from our study, we conclude that even if the latter were true, it would be practically impossible to establish this by computing trajectories of the map. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:12
相关论文
共 17 条
[1]   THE DYNAMICS OF THE HENON MAP [J].
BENEDICKS, M ;
CARLESON, L .
ANNALS OF MATHEMATICS, 1991, 133 (01) :73-169
[2]   CHARACTERIZATION OF UNSTABLE PERIODIC-ORBITS IN CHAOTIC ATTRACTORS AND REPELLERS [J].
BIHAM, O ;
WENZEL, W .
PHYSICAL REVIEW LETTERS, 1989, 63 (08) :819-822
[3]   PERIODIC-ORBITS AS THE SKELETON OF CLASSICAL AND QUANTUM CHAOS [J].
CVITANOVIC, P .
PHYSICA D, 1991, 51 (1-3) :138-151
[4]   Interval methods for rigorous investigations of periodic orbits [J].
Galias, Z .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (09) :2427-2450
[5]   On the structure of existence regions for sinks of the Henon map [J].
Galias, Zbigniew ;
Tucker, Warwick .
CHAOS, 2014, 24 (01)
[7]   NUMERICAL STUDY OF COEXISTING ATTRACTORS FOR THE HENON MAP [J].
Galias, Zbigniew ;
Tucker, Warwick .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (07)
[8]   ON THE SYMBOLIC DYNAMICS OF THE HENON MAP [J].
GRASSBERGER, P ;
KANTZ, H ;
MOENIG, U .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (24) :5217-5230
[9]   2-DIMENSIONAL MAPPING WITH A STRANGE ATTRACTOR [J].
HENON, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 50 (01) :69-77
[10]   Compound windows of the Henon-map [J].
Lorenz, Edward N. .
PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (13) :1689-1704