Removal of methylene blue from aqueous solution using sediment obtained from a canal in an industrial park

被引:8
|
作者
Chen, Lih-Fu [1 ]
Wang, Hsiou-Hsuan [2 ]
Lin, Kao-Yung [3 ]
Kuo, Jui-Yen [4 ]
Wang, Ming-Kuang [5 ]
Liu, Cheng-Chung [4 ]
机构
[1] Shu Te Univ, Coll Liberal Educ, Kaohsiung 82446, Taiwan
[2] Natl Ilan Univ, Dept Mat Engn, Ilan 260, Taiwan
[3] Nat Open Univ, Dept Living Sci, Taipei 24701, Taiwan
[4] Natl Ilan Univ, Dept Environm Engn, Ilan 260, Taiwan
[5] Natl Taiwan Univ, Dept Agr Chem, Taipei 106, Taiwan
关键词
adsorption; canal sediment; Dubinin-Radushkevich; isotherms; kinetic; methylene blue; ADSORPTION; WASTE; DYE; COMPOSITES; ADSORBENT; SOILS;
D O I
10.2166/wst.2018.326
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Drainage canal sediments in an industrial park are generally dredged to landfill in Taiwan. The objective of this study was to evaluate feasibility employing the sediment as an adsorbent for removal of dye. The sediment contained approximately 10% of organic matter and little heavy metals. Infrared (IR) analysis revealed that carboxyl was the most important functional group for methylene blue (MB) sorption. Canal sediment could remove the most MB from water at pH 8.0 and this removal increased with increasing temperature. The MB sorption was well described by the Langmuir, Dubinin-Radushkevich, and Temkin sorption isotherms at 10 degrees C, but it showed good compliance with Freundlich isotherm at 25 degrees C and 40 degrees C. The MB adsorption was a spontaneous and endothermic reaction; its maximum calculated adsorption capacity (Q(m)) was 56.0 mg g(-1) at 10 degrees C by the Langmuir isotherm. The calculated values of enthalpy (Delta H degrees) and entropy (Delta S degrees) are 14.6 kJ mol(-1) and 149.2 kJ mol(-1), respectively. Only pseudo-second-order adsorption kinetic model successfully described the kinetics of MB onto the sediment at different operation parameters. Activation energy of MB adsorption calculated from Arrhenius equation was 16.434 kJ mol(-1), indicating the binding between canal sediment and MB was a physical adsorption.
引用
收藏
页码:556 / 570
页数:15
相关论文
共 50 条
  • [41] Adsorptive removal of methylene blue from aqueous solution using different agricultural wastes as adsorbents
    Sana Dardouri
    Jalila Sghaier
    Korean Journal of Chemical Engineering, 2017, 34 : 1037 - 1043
  • [42] Methylene Blue and Malachite Green Removal From Aqueous Solution Using Waste Activated Carbon
    Mishra, Sneha Prabha
    Patra, Amiya Ranjan
    Das, Shubhalaxmi
    BIOINTERFACE RESEARCH IN APPLIED CHEMISTRY, 2021, 11 (01): : 7410 - 7421
  • [43] Removal of Methylene Blue from Aqueous Solution Using a Polarizable Nanolayered Manganese Oxide Film
    Masaharu Nakayama
    Shinya Nakamoto
    Chihiro Iida
    Makoto Yoshimoto
    Analytical Sciences, 2009, 25 : 229 - 233
  • [44] REMOVAL OF METHYLENE BLUE FROM AQUEOUS SOLUTION USING GHASSOUL, A LOW-COST ADSORBENT
    Elass, K.
    Laachach, A.
    Alaoui, A.
    Azzi, M.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2010, 8 (02): : 153 - 163
  • [45] Removal of methylene blue from aqueous solution using wine-processing waste sludge
    Liu, Cheng-Chung
    Li, Yuan-Shen
    Chen, Yue-Ming
    Li, Hsuan-Hua
    Wang, Ming-Kuang
    WATER SCIENCE AND TECHNOLOGY, 2012, 65 (12) : 2191 - 2199
  • [46] Removal of methylene blue from aqueous solution using a polarizable nanolayered manganese oxide film
    Department of Applied Chemistry, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan
    Anal. Sci., 2 (229-233):
  • [47] Removal of methylene blue dye aqueous solution using photocatalysis
    Joshi, K. M.
    Shrivastava, V. S.
    INTERNATIONAL JOURNAL OF NANO DIMENSION, 2012, 2 (04) : 241 - 252
  • [48] Removal of methylene blue azo dye from aqueous solution using biosorbent developed from floral waste
    Agarwal, S.
    Rana, N.
    Bhardwaj, P.
    Tiwari, G. N.
    Yadav, A. K.
    Garg, M. C.
    Mathur, A.
    Tripathi, A.
    JOURNAL OF ENVIRONMENTAL BIOLOGY, 2024, 45 (01): : 54 - 61
  • [49] Removal of methylene blue from aqueous solution using silica nanoparticle extracted from skewer coconut leaves
    Esa, Yusak Asri Mohd
    Sapawe, Norzahir
    MATERIALS TODAY-PROCEEDINGS, 2020, 31 : 398 - 401
  • [50] Removal of methylene blue from aqueous solution by dehydrated wheat bran carbon
    Ozer, Ahmet
    Dursun, Gulbeyi
    JOURNAL OF HAZARDOUS MATERIALS, 2007, 146 (1-2) : 262 - 269