Removal of methylene blue from aqueous solution using sediment obtained from a canal in an industrial park

被引:8
|
作者
Chen, Lih-Fu [1 ]
Wang, Hsiou-Hsuan [2 ]
Lin, Kao-Yung [3 ]
Kuo, Jui-Yen [4 ]
Wang, Ming-Kuang [5 ]
Liu, Cheng-Chung [4 ]
机构
[1] Shu Te Univ, Coll Liberal Educ, Kaohsiung 82446, Taiwan
[2] Natl Ilan Univ, Dept Mat Engn, Ilan 260, Taiwan
[3] Nat Open Univ, Dept Living Sci, Taipei 24701, Taiwan
[4] Natl Ilan Univ, Dept Environm Engn, Ilan 260, Taiwan
[5] Natl Taiwan Univ, Dept Agr Chem, Taipei 106, Taiwan
关键词
adsorption; canal sediment; Dubinin-Radushkevich; isotherms; kinetic; methylene blue; ADSORPTION; WASTE; DYE; COMPOSITES; ADSORBENT; SOILS;
D O I
10.2166/wst.2018.326
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Drainage canal sediments in an industrial park are generally dredged to landfill in Taiwan. The objective of this study was to evaluate feasibility employing the sediment as an adsorbent for removal of dye. The sediment contained approximately 10% of organic matter and little heavy metals. Infrared (IR) analysis revealed that carboxyl was the most important functional group for methylene blue (MB) sorption. Canal sediment could remove the most MB from water at pH 8.0 and this removal increased with increasing temperature. The MB sorption was well described by the Langmuir, Dubinin-Radushkevich, and Temkin sorption isotherms at 10 degrees C, but it showed good compliance with Freundlich isotherm at 25 degrees C and 40 degrees C. The MB adsorption was a spontaneous and endothermic reaction; its maximum calculated adsorption capacity (Q(m)) was 56.0 mg g(-1) at 10 degrees C by the Langmuir isotherm. The calculated values of enthalpy (Delta H degrees) and entropy (Delta S degrees) are 14.6 kJ mol(-1) and 149.2 kJ mol(-1), respectively. Only pseudo-second-order adsorption kinetic model successfully described the kinetics of MB onto the sediment at different operation parameters. Activation energy of MB adsorption calculated from Arrhenius equation was 16.434 kJ mol(-1), indicating the binding between canal sediment and MB was a physical adsorption.
引用
收藏
页码:556 / 570
页数:15
相关论文
共 50 条
  • [31] Valorization of sewage sludge for methylene blue removal from aqueous solution
    Sahnoun, A. Y.
    Selatnia, A.
    Alouache, A.
    Tidjani, A. E. B.
    Bellil, A.
    Ayeche, R.
    BIOMASS CONVERSION AND BIOREFINERY, 2024, 14 (07) : 8775 - 8791
  • [32] Valorization of sewage sludge for methylene blue removal from aqueous solution
    A. Y. Sahnoun
    A. Selatnia
    A. Alouache
    A. E. B. Tidjani
    A. Bellil
    R. Ayeche
    Biomass Conversion and Biorefinery, 2024, 14 : 8775 - 8791
  • [33] Cationic Dye (Methylene Blue) Removal from Aqueous Solution by Montmorillonite
    Fil, Baybars Ali
    Ozmetin, Cengiz
    Korkmaz, Mustafa
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2012, 33 (10) : 3184 - 3190
  • [34] Removal of Methylene Blue from Aqueous Solution by Tunics of the Corm of the Saffron
    Dbik, Abdellah
    Bentahar, Safae
    El Messaoudi, Noureddine
    El Khomri, Mohammed
    Lacherai, Abdellah
    IRANIAN JOURNAL OF CHEMISTRY & CHEMICAL ENGINEERING-INTERNATIONAL ENGLISH EDITION, 2020, 39 (06): : 95 - 104
  • [35] Removal of methylene blue from aqueous solution by modified bamboo hydrochar
    Qian, Wei-Cong
    Luo, Xi-Ping
    Wang, Xing
    Guo, Ming
    Li, Bing
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2018, 157 : 300 - 306
  • [36] Removal of methylene blue from aqueous solution by biochar derived from rice husk
    Buil, Huyen Thuong
    Leo, Phuong Thu
    Nguyen, Thu Phuong
    Lel, Duy Ngoc
    Vol, Dieu Linh
    Phaml, Le Anh
    Nguyenl, Luong Lam
    Nguyen, Thi Hue
    Le, Tuan Vinh
    Huongl, Mai
    Dinhr, Thi Mai Thanh
    Herrmann, Marine
    Ouillon, Sylvain
    Duong, Thi Thuy
    Le, Thi Phuong Quynh
    VIETNAM JOURNAL OF EARTH SCIENCES, 2022, 44 (02): : 273 - 285
  • [37] Adsorptive removal of methylene blue from aqueous solution using different agricultural wastes as adsorbents
    Dardouri, Sana
    Sghaier, Jalila
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2017, 34 (04) : 1037 - 1043
  • [38] Removal of Methylene Blue from Aqueous Solution by Using Electrical Arc Furnace (EAF) Slag
    Suhaimy, Suhanna Natalya Mohd
    Abdullah, Luqman Chuah
    INDONESIAN JOURNAL OF CHEMISTRY, 2020, 20 (01) : 113 - 119
  • [39] Removal of Methylene Blue from Aqueous Solution Using a Polarizable Nanolayered Manganese Oxide Film
    Nakayama, Masaharu
    Nakamoto, Shinya
    Iida, Chihiro
    Yoshimoto, Makoto
    ANALYTICAL SCIENCES, 2009, 25 (02) : 229 - 233
  • [40] Removal of Methylene Blue from an Aqueous Solution Using a Surfactant-Modified Activated Carbon
    El-Dossoki, Farid I.
    Hamza, Osama K.
    Gomaa, Esam A.
    ENGINEERING SOLUTIONS TOWARD SUSTAINABLE DEVELOPMENT, ESSD 2023, 2024, : 285 - 309