Removal of methylene blue from aqueous solution using sediment obtained from a canal in an industrial park

被引:8
|
作者
Chen, Lih-Fu [1 ]
Wang, Hsiou-Hsuan [2 ]
Lin, Kao-Yung [3 ]
Kuo, Jui-Yen [4 ]
Wang, Ming-Kuang [5 ]
Liu, Cheng-Chung [4 ]
机构
[1] Shu Te Univ, Coll Liberal Educ, Kaohsiung 82446, Taiwan
[2] Natl Ilan Univ, Dept Mat Engn, Ilan 260, Taiwan
[3] Nat Open Univ, Dept Living Sci, Taipei 24701, Taiwan
[4] Natl Ilan Univ, Dept Environm Engn, Ilan 260, Taiwan
[5] Natl Taiwan Univ, Dept Agr Chem, Taipei 106, Taiwan
关键词
adsorption; canal sediment; Dubinin-Radushkevich; isotherms; kinetic; methylene blue; ADSORPTION; WASTE; DYE; COMPOSITES; ADSORBENT; SOILS;
D O I
10.2166/wst.2018.326
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Drainage canal sediments in an industrial park are generally dredged to landfill in Taiwan. The objective of this study was to evaluate feasibility employing the sediment as an adsorbent for removal of dye. The sediment contained approximately 10% of organic matter and little heavy metals. Infrared (IR) analysis revealed that carboxyl was the most important functional group for methylene blue (MB) sorption. Canal sediment could remove the most MB from water at pH 8.0 and this removal increased with increasing temperature. The MB sorption was well described by the Langmuir, Dubinin-Radushkevich, and Temkin sorption isotherms at 10 degrees C, but it showed good compliance with Freundlich isotherm at 25 degrees C and 40 degrees C. The MB adsorption was a spontaneous and endothermic reaction; its maximum calculated adsorption capacity (Q(m)) was 56.0 mg g(-1) at 10 degrees C by the Langmuir isotherm. The calculated values of enthalpy (Delta H degrees) and entropy (Delta S degrees) are 14.6 kJ mol(-1) and 149.2 kJ mol(-1), respectively. Only pseudo-second-order adsorption kinetic model successfully described the kinetics of MB onto the sediment at different operation parameters. Activation energy of MB adsorption calculated from Arrhenius equation was 16.434 kJ mol(-1), indicating the binding between canal sediment and MB was a physical adsorption.
引用
收藏
页码:556 / 570
页数:15
相关论文
共 50 条
  • [11] Removal of methylene blue from aqueous solution by graphene oxide
    Yang, Sheng-Tao
    Chen, Sheng
    Chang, Yanli
    Cao, Aoneng
    Liu, Yuanfang
    Wang, Haifang
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2011, 359 (01) : 24 - 29
  • [12] Removal of methylene blue from aqueous solution by natural phosphate
    Rida, Kamel
    Chemmal, Bilal
    Boukhemkhem, Ali
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2013, 15 (5-6): : 493 - 500
  • [13] Removal of Methylene Blue from Aqueous Solution by Bone Char
    Jia, Puqi
    Tan, Hongwei
    Liu, Kuiren
    Gao, Wei
    APPLIED SCIENCES-BASEL, 2018, 8 (10):
  • [14] Removal of methylene blue from aqueous solution by ryegrass straw
    da Silva, E. O.
    dos Santos, V. D.
    de Araujo, E. B.
    Guterres, F. P.
    Zottis, R.
    Flores, W. H.
    de Almeida, A. R. F.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2020, 17 (08) : 3723 - 3740
  • [15] Removal of methylene blue from aqueous solution by ryegrass straw
    E. O. da Silva
    V. D. dos Santos
    E. B. de Araujo
    F. P. Guterres
    R. Zottis
    W. H. Flores
    A. R. F. de Almeida
    International Journal of Environmental Science and Technology, 2020, 17 : 3723 - 3740
  • [16] Removal of Methylene Blue from Aqueous Solution by Coffee Residues
    Nitayaphat, Walaikorn
    Jintakosol, Thanut
    Engkaseth, Kamontip
    Wanrakakit, Yada
    CHIANG MAI JOURNAL OF SCIENCE, 2015, 42 (02): : 407 - 416
  • [17] Adsorptive Removal of Methylene Blue from Aqueous Solution by the Activated Carbon Obtained from the Fruit of Catalpa bignonioides
    Gecgel, Unal
    Kocabiyik, Baris
    Uner, Osman
    WATER AIR AND SOIL POLLUTION, 2015, 226 (08):
  • [18] Adsorptive Removal of Methylene Blue from Aqueous Solution by the Activated Carbon Obtained from the Fruit of Catalpa bignonioides
    Ünal Geçgel
    Barış Kocabıyık
    Osman Üner
    Water, Air, & Soil Pollution, 2015, 226
  • [19] Removal of methylene blue from aqueous solution by adsorption on pyrophyllite
    Zhang, Jian
    Zhou, Yan
    Jiang, Meiyan
    Li, Juan
    Sheng, Jiawei
    JOURNAL OF MOLECULAR LIQUIDS, 2015, 209 : 267 - 271
  • [20] Removal of Methylene Blue from aqueous solution by adsorption on sand
    Bukallah, Saeed B.
    Rauf, M. A.
    AlAli, S. S.
    DYES AND PIGMENTS, 2007, 74 (01) : 85 - 87