PGE, Re-Os, and Mo isotope systematics in Archean and early Proterozoic sedimentary systems as proxies for redox conditions of the early Earth

被引:125
作者
Siebert, C
Kramers, JD
Meisel, T
Morel, P
Nägler, TF
机构
[1] Univ Bern, Inst Geol Sci, CH-3012 Bern, Switzerland
[2] Univ Leoben, A-8700 Leoben, Austria
关键词
D O I
10.1016/j.gca.2004.10.006
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Re-Os data and PGE concentrations as well as Mo concentrations and isotope data are reported for suites of fine clastic sediments and black shales from the Barberton Greenstone Belt, South Africa (Fig Tree and Moodies Groups, 3.25-3.15 Ga), the Belingwe Greenstone Belt, Zimbabwe (Manjeri Formation, ca. 2.7 Ga) and shales from the Witwatersrand, Ventersdorp and Transvaal Supergroups, South Africa ranging from 2.95 to 2.2 Ga. Moderately oxidizing conditions are required to mobilize Re and Mo in the environment, Mo fractionation only occurs in solution, and these parameters thus have potential use as paleoredox proxies for the early Earth. PGE + Re abundance patterns of Barberton Greenstone Belt sediments are uniform and very similar in shape to those of komatiites. This indicates (1) that the PGE came from a source of predominantly ultramafic composition and, (2) that PGE were transported and deposited essentially in particulate form. Sediments from the younger Belingwe Greenstone Belt show more fractionated PGE + Re patterns and have Re/Os ratios 10 to 100X higher than those of Barberton sediments. Their PGE abundance patterns and Re/Os ratios are intermediate between those of the mid-Archean shales and Neoproterozoic to Recent black shales. They reflect scavenging of Re from solution in the sedimentary environment. delta(98/95)Mo values of black shales of all ages correlate with their concentrations. The Barberton Greenstone Belt samples have similar to 1-3 ppm Mo, similar to a granitoid-basaltic source. This Mo has delta(98/95)Mo between -1.9 and -2.4 parts per thousand relative to present day mean ocean water molybdenum, MOMO and is thus not isotopically fractionated relative to such a source. Similar to the PGE this indicates transport in solid form. Sediments from the Belingwe Greenstone Belt show in part enhanced Mo concentrations (up to 6 ppm) and Mo isotope fractionation (delta(98/95)Mo up to -1.4 parts per thousand relative to MOMO). The combined PGE + Re and Mo data show mainly reducing conditions in the mid-Archean and suggest that by 2.7 Ga, the atmosphere and oceans had become more oxidizing. Substantially younger samples from the Transvaal Supergroup (to ca. 2.2 Ga) surprisingly have mainly low Mo concentrations (around 1 ppm) and show no significant Mo isotope fractionation relative to the continental source. Among possible explanations for this are a return to reducing atmospheric conditions after 2.7 Ga, reservoir effects, or Mo removal by sulfide precipitation following sulfate reduction in early Proterozoic oceans. Copyright (c) 2005 Elsevier Ltd.
引用
收藏
页码:1787 / 1801
页数:15
相关论文
共 84 条
[1]   Proterozoic ocean chemistry and evolution: A bioinorganic bridge? [J].
Anbar, AD ;
Knoll, AH .
SCIENCE, 2002, 297 (5584) :1137-1142
[2]   RHENIUM IN SEAWATER - CONFIRMATION OF GENERALLY CONSERVATIVE BEHAVIOR [J].
ANBAR, AD ;
CREASER, RA ;
PAPANASTASSIOU, DA ;
WASSERBURG, GJ .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1992, 56 (11) :4099-4103
[3]   ZIRCON ION MICROPROBE STUDIES BEARING ON THE AGE AND EVOLUTION OF THE WITWATERSRAND TRIAD [J].
ARMSTRONG, RA ;
COMPSTON, W ;
RETIEF, EA ;
WILLIAMS, IS ;
WELKE, HJ .
PRECAMBRIAN RESEARCH, 1991, 53 (3-4) :243-266
[4]   Molybdenum isotope evidence for widespread anoxia in mid-proterozoic oceans [J].
Arnold, GL ;
Anbar, AD ;
Barling, J ;
Lyons, TW .
SCIENCE, 2004, 304 (5667) :87-90
[5]   Molybdenum isotope fractionation during adsorption by manganese oxides [J].
Barling, J ;
Anbar, AD .
EARTH AND PLANETARY SCIENCE LETTERS, 2004, 217 (3-4) :315-329
[6]   Natural mass-dependent variations in the isotopic composition of molybdenum [J].
Barling, J ;
Arnold, GL ;
Anbar, AD .
EARTH AND PLANETARY SCIENCE LETTERS, 2001, 193 (3-4) :447-457
[7]   Pb, O, and C isotopes in silicified Mooidraai dolomite (Transvaal Supergroup, South Africa):: implications for the composition of Paleoproterozoic seawater and 'dating' the increase of oxygen in the Precambrian atmosphere [J].
Bau, M ;
Romer, RL ;
Lüders, V ;
Beukes, NJ .
EARTH AND PLANETARY SCIENCE LETTERS, 1999, 174 (1-2) :43-57
[8]   Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa [J].
Bau, M ;
Dulski, P .
PRECAMBRIAN RESEARCH, 1996, 79 (1-2) :37-55
[10]   Re-Os isotopic measurements at the femtomole level in natural samples [J].
Birck, JL ;
RoyBarman, M ;
Capmas, F .
GEOSTANDARDS NEWSLETTER-THE JOURNAL OF GEOSTANDARDS AND GEOANALYSIS, 1997, 21 (01) :19-27