Global bioenergy with carbon capture and storage potential is largely constrained by sustainable irrigation

被引:43
作者
Ai, Zhipin [1 ]
Hanasaki, Naota [1 ]
Heck, Vera [2 ]
Hasegawa, Tomoko [3 ,4 ]
Fujimori, Shinichiro [4 ,5 ,6 ]
机构
[1] Natl Inst Environm Studies, Ctr Climate Change Adaptat, Tsukuba, Ibaraki, Japan
[2] Potsdam Inst Climate Impact Res, Potsdam, Germany
[3] Ritsumeikan Univ, Coll Sci & Engn, Kusatsu, Japan
[4] Natl Inst Environm Studies, Ctr Social & Environm Syst Res, Tsukuba, Ibaraki, Japan
[5] Kyoto Univ, Dept Environm Engn, Kyoto, Japan
[6] Int Inst Appl Syst Anal IIASA, Laxenburg, Austria
关键词
CLIMATE-CHANGE MITIGATION; SHARED SOCIOECONOMIC PATHWAYS; INTEGRATED ASSESSMENT; WATER SCARCITY; TRADE-OFFS; MODEL; LAND; INCREASE; 21ST-CENTURY; DEMAND;
D O I
10.1038/s41893-021-00740-4
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Capturing the carbon from energy crops-bioenergy with carbon capture and storage (BECCS)-requires water to grow the crops. This study finds that although unlimited irrigation could increase BECCS potential by 60-71% by 2100, doing so sustainably would increase it by only 5-6%. Bioenergy with carbon capture and storage (BECCS) is crucial in many stringent climate scenarios. Although irrigation can enhance BECCS potential, where and to what extent it can enhance global BECCS potential are unknown when constrained by preventing additional water stress and suppressing withdrawal of nonrenewable water resources. With a spatially explicit representation of bioenergy crop plantations and water cycle in an internally consistent model framework, we identified the irrigable bioenergy cropland on the basis of the water resources reserve. Irrigation of such cropland enhanced BECCS potential by only 5-6% (<60-71% for unconstrained irrigation) above the rain-fed potential (0.82-1.99 Gt C yr(-1)) by the end of this century. Nonetheless, it limited additional water withdrawal (166-298 km(3) yr(-1)), especially from nonrenewable water sources (16-20%), compared with unconstrained irrigation (1,392-3,929 km(3) yr(-1) and 73-78%). Our findings highlight the importance of irrigation constraints in global BECCS potential.
引用
收藏
页码:884 / +
页数:10
相关论文
共 58 条
  • [41] The impact of climate change mitigation on water demand for energy and food: An integrated analysis based on the Shared Socioeconomic Pathways
    Mouratiadou, Ioanna
    Biewald, Anne
    Pehl, Michaja
    Bonsch, Markus
    Baumstark, Lavinia
    Klein, David
    Popp, Alexander
    Luderer, Gunnar
    Kriegler, Elmar
    [J]. ENVIRONMENTAL SCIENCE & POLICY, 2016, 64 : 48 - 58
  • [42] EMF-33 insights on bioenergy with carbon capture and storage (BECCS)
    Muratori, Matteo
    Bauer, Nico
    Rose, Steven K.
    Wise, Marshall
    Daioglou, Vassilis
    Cui, Yiyun
    Kato, Etsushi
    Gidden, Matthew
    Strefler, Jessica
    Fujimori, Shinichiro
    Sands, Ronald D.
    van Vuuren, Detlef P.
    Weyant, John
    [J]. CLIMATIC CHANGE, 2020, 163 (03) : 1621 - 1637
  • [43] The future of bioenergy
    Reid, Walter V.
    Ali, Mariam K.
    Field, Christopher B.
    [J]. GLOBAL CHANGE BIOLOGY, 2020, 26 (01) : 274 - 286
  • [44] Rogelj J, 2018, SPECIAL REPORT GLOBA
  • [45] A new scenario logic for the Paris Agreement long-term temperature goal
    Rogelj, Joeri
    Huppmann, Daniel
    Krey, Volker
    Riahi, Keywan
    Clarke, Leon
    Gidden, Matthew
    Nicholls, Zebedee
    Meinshausen, Malte
    [J]. NATURE, 2019, 573 (7774) : 357 - +
  • [46] Scenarios towards limiting global mean temperature increase below 1.5 °C
    Rogelj, Joeri
    Popp, Alexander
    Calvin, Katherine V.
    Luderer, Gunnar
    Emmerling, Johannes
    Gernaat, David
    Fujimori, Shinichiro
    Strefler, Jessica
    Hasegawa, Tomoko
    Marangoni, Giacomo
    Krey, Volker
    Kriegler, Elmar
    Riahi, Keywan
    van Vuuren, Detlef P.
    Doelman, Jonathan
    Drouet, Laurent
    Edmonds, Jae
    Fricko, Oliver
    Harmsen, Mathijs
    Havlik, Petr
    Humpenoeder, Florian
    Stehfest, Elke
    Tavoni, Massimo
    [J]. NATURE CLIMATE CHANGE, 2018, 8 (04) : 325 - +
  • [47] Geosciences after Paris
    Rogelj, Joeri
    Knutti, Reto
    [J]. NATURE GEOSCIENCE, 2016, 9 (03) : 187 - 189
  • [48] Constraints on biomass energy deployment in mitigation pathways: the case of water scarcity
    Seferian, Roland
    Rocher, Matthias
    Guivarch, Celine
    Colin, Jeanne
    [J]. ENVIRONMENTAL RESEARCH LETTERS, 2018, 13 (05):
  • [49] Shirakawa N., 2005, Proc. Hydraul. Eng, V49, P391, DOI [10.2208/prohe.49.391, DOI 10.2208/PROHE.49.391]
  • [50] Slade R, 2014, NAT CLIM CHANGE, V4, P99, DOI [10.1038/nclimate2097, 10.1038/NCLIMATE2097]