Fuzzy generalized median graphs computation: Application to content-based document retrieval

被引:12
作者
Chaieb, Ramzi [1 ,5 ]
Kalti, Karim [2 ,5 ]
Luqman, Muhammad Muzzamil [3 ]
Coustaty, Mickael [3 ]
Ogier, Jean-Marc [3 ]
Ben Amara, Najoua Essoukri [4 ,5 ]
机构
[1] Tunis El Manar Univ, Natl Engn Sch Tunis, Tunis, Tunisia
[2] Monastir Univ, Fac Sci Monastir, Monastir, Tunisia
[3] Univ La Rochelle, Lab L3i, La Rochelle, France
[4] Sousse Univ, Natl Engn Sch Sousse, Sousse, Tunisia
[5] Sousse Univ, ENISo, LATIS, Sousse, Tunisia
关键词
Fuzzy attributed relational graph; Graph embedding; Fuzzy set median graph; Fuzzy generalized median graph; Similarity measure; Document image retrieval; IMAGE RETRIEVAL; RECOGNITION; CLASSIFICATION;
D O I
10.1016/j.patcog.2017.07.030
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fuzzy median graph is an important new concept that can represent a set of fuzzy graphs by a representative fuzzy graph prototype. However, the computation of a fuzzy median graph remains a computationally expensive task. In this paper, we propose a new approximate algorithm for the computation of the Fuzzy Generalized Median Graph (FGMG) based on Fuzzy Attributed Relational Graph (FARG) embedding in a suitable vector space in order to capture the maximum information in graphs and to improve the accuracy and speed of document image retrieval processing. In this study, we focus on the application of FGMGs to the Content-based Document Retrieval (CBDR) problem. Experiments on real and synthetic databases containing a large number of FARGs with large sizes show that a CBDR using the FGMG as a dataset representative yields better results than an exhaustive and sequential retrieval in terms of gains in accuracy and time processing. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:266 / 284
页数:19
相关论文
共 38 条
  • [1] Agam G., 2006, ILLINOIS I TECHNOL
  • [2] Ahmed GF, 2011, INT J SOFT COMPUT EN, V1, P247
  • [3] Chaieb R, 2015, PROC INT CONF DOC, P921, DOI 10.1109/ICDAR.2015.7333896
  • [4] Thirty years of graph matching in pattern recognition
    Conte, D
    Foggia, P
    Sansone, C
    Vento, M
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2004, 18 (03) : 265 - 298
  • [5] Image retrieval: Ideas, influences, and trends of the new age
    Datta, Ritendra
    Joshi, Dhiraj
    Li, Jia
    Wang, James Z.
    [J]. ACM COMPUTING SURVEYS, 2008, 40 (02)
  • [6] Doermann D., 2010, 9 IAPR INT WORK DOC
  • [7] Ferrer M, 2005, LECT NOTES COMPUT SC, V3523, P139
  • [8] A generic framework for median graph computation based on a recursive embedding approach
    Ferrer, M.
    Karatzas, D.
    Valveny, E.
    Bardaji, I.
    Bunke, H.
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2011, 115 (07) : 919 - 928
  • [9] Ferrer Miquel, 2010, Proceedings of the 2010 20th International Conference on Pattern Recognition (ICPR 2010), P1562, DOI 10.1109/ICPR.2010.386
  • [10] Generalized median graph computation by means of graph embedding in vector spaces
    Ferrer, M.
    Valveny, E.
    Serratosa, F.
    Riesen, K.
    Bunke, H.
    [J]. PATTERN RECOGNITION, 2010, 43 (04) : 1642 - 1655