A high order compact finite difference scheme for time fractional Fokker-Planck equations

被引:43
作者
Vong, Seakweng [1 ]
Wang, Zhibo [1 ]
机构
[1] Univ Macau, Dept Math, Taipa, Macau, Peoples R China
关键词
Fractional Fokker-Planck equation; High order compact difference scheme; Energy method; Stability; Convergence; DIFFUSION EQUATIONS;
D O I
10.1016/j.aml.2014.11.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a high order compact (HOC) scheme for time fractional Fokker-Planck equations with variable convection is constructed. The scheme is studied using its matrix form by the energy method. We find that the difficulty arising from the variable coefficient can be overcome by simple modifications of the coefficient matrices. The scheme is shown to be stable and convergent with order tau(2-alpha) + h(4) which is higher than some recently studied schemes. Numerical examples are given to justify the theoretical analysis. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:38 / 43
页数:6
相关论文
共 50 条
  • [41] FRACTIONAL FOKKER-PLANCK EQUATION IN A FRACTAL MEDIUM
    Deng, Shuxian
    Ge, Xinxin
    THERMAL SCIENCE, 2020, 24 (04): : 2589 - 2595
  • [42] Uniqueness of Fokker-Planck equations for spin lattice systems (I): compact case
    Ludovic Dan Lemle
    Ran Wang
    Liming Wu
    Semigroup Forum, 2013, 86 : 583 - 591
  • [43] Uniqueness of Fokker-Planck equations for spin lattice systems (I): compact case
    Lemle, Ludovic Dan
    Wang, Ran
    Wu, Liming
    SEMIGROUP FORUM, 2013, 86 (03) : 583 - 591
  • [44] Finite difference scheme for the time-space fractional diffusion equations
    Cao, Jianxiong
    Li, Changpin
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2013, 11 (10): : 1440 - 1456
  • [45] A SEMIDISCRETE FINITE ELEMENT APPROXIMATION OF A TIME-FRACTIONAL FOKKER-PLANCK EQUATION WITH NONSMOOTH INITIAL DATA
    Le, Kim Ngan
    McLean, William
    Mustapha, Kassem
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (06) : A3831 - A3852
  • [46] 1/2-order fractional Fokker-Planck equation on comblike model
    Zahran, MA
    JOURNAL OF STATISTICAL PHYSICS, 2002, 109 (5-6) : 1005 - 1016
  • [47] ENTROPY DISSIPATION OF FOKKER-PLANCK EQUATIONS ON GRAPHS
    Chow, Shui-Nee
    Li, Wuchen
    Zhou, Haomin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (10) : 4929 - 4950
  • [48] Convergence of a numerical method for solving discontinuous Fokker-Planck equations
    Wang, Hongyun
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (04) : 1425 - 1452
  • [49] Structure Preserving Schemes for Fokker-Planck Equations of Irreversible Processes
    Liu, Chen
    Gao, Yuan
    Zhang, Xiangxiong
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 98 (01)
  • [50] GLOBAL CLASSICAL SOLUTIONS FOR QUANTUM KINETIC FOKKER-PLANCK EQUATIONS
    Luo, Lan
    Zhang, Xinping
    ACTA MATHEMATICA SCIENTIA, 2015, 35 (01) : 140 - 156